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I. INTRODUCTION

This report contains theoretical investigations on the electrical conduc-

tivity and thermodynamic properties of nonideal plasmas, which were carried

through in the period from 1 November 1979 to 31 December 1980 under ONR Contract

N00014-79-C-0073. In addition, the theoretical results were compared with experi-

mental data for nonideal plasmas. These comparisons are of a preliminary nature,

since the experimental conductivities for nonideal plasmas differ not only quant-

itatively but also qualitatively in the literature.

CHAPTER II. The dependence of the electrical conductivity a of dense (non-

degenerate) plasmas on the nonideality parameters y - Ze2 n /3/KT was evaluated

by summing the probabilities for v-body interactions (v - 2,3,4,...) of the con-

duction electrons. It is shown that a is noticeably smaller than the binary con-

ductivity a2 for y > 10- . The theoretical decrease of u with increasing y is

confirmed, however, only by some experimental data, while other experimental data

indicate an increase of a with increasing y for the same pressure.

CHAPTER III. Based on the classical and quantum Boltzmann equations, the

electrical conductivities of classical and degenerate nonideal plasmas were evalu-

ated. Although in this kinetic approach many-body interactions are taken into

account only through an exponentially shielded Coulomb potential, in which the

electron-ion scattering occurs, the results give, in agreement with the experimen-

tal data, conductivities which are by about one order of magnitude smaller than the

Spitzer conductivity for ideal plasmas. The increase of the dimensionless conduc-
" ~* 1/2e2 /KT 3/2

tivity a * m e a/(KT) with increasing y is confirmed by some experimental

data but not by all of them. The new Coulomb logarithm does no longer go to zero

for large y values (as in the Spitzer theory) but is well behaved for large elect-

ron densities, and even for solid state densities due to the consideration of

electron degeneracy.
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CHAPTER IV. With the help of quantum-field theoretical methods from the

theory of metals, the electrical conductivity of nonideal plasmas was calculated

under consideration of electron scattering by low-frequency plasmons (ion waves)

and high-frequency plasmons (electron waves) for classical and degenerate conditions.

The resulting conductivity formulas agree with the Spitzer theory for y + 0 and ex-

hibit numerical values which are considerably smaller than the Spitzer values but

are still larger than the theoretical conductivities obtained in III for increasins;
,

y. The numerical values a agree with the experimental data qualitatively but are

somewhat too high.

CHAPTER V. The possibility of anomalous diffusion and conduction transverse

to magnetic fields B was studied since large charged particle transport across

magnetic fields is of interest for MHD generators. For weakly nonideal plasmas,
2

the anomalous transverse conductivity was shown to be a, - w 2p/4w/2w , where w =
- P B' P

(ne2/Eom)1/2 is the plasma frequency and w. - eBo/m is the gyration frequency

of the electrons (e,m). This formula agrees with experimental data for weakly non-

ideal plasmas, but should be also correct qualitatively for nonideal plasmas. There

are, however, no experimental data available on anomalous diffusion and conduction

in magnetic fields for nonideal plasmas.

CHAPTER VI. In connection with the electric current transport in the elect-

ric field fluctuations produced collectively by the electrons and ions in random

thermal motion, the electric.microfield distribution of thermal plasmas was deri-

ved by equilibrium statistical mechanics. Comparison with the resulting tempe-

rature dependent microfield distribution with the classical (T-independent) Holts-

mark distribution and its later extensions, indicates that the latter theories are

approximately applicable to strongly nonideal plasmas but are invalid for ideal

plasmas (to which they are. usually applied in literature).
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CHAPTERS VII - VIII. By means of Bose statistics, the contribution of the

thermally excited (longitudinal) electron and ion waves to the free energy of

nonideal classical and quantum plasmas was calculated. It is shown that the ran-

dom low-frequency ion oscillations contribute more to the free energy than the

high-frequency electron oscillations. The free energy of the random ion waves

is quantitatively comparable to the free energy of the thermal (non- collective)

ion motions for high densities (n < 1023cm-3) and standard plasma temperatures

(T < 10 6 0K). Similar calculations were performed for dense gases, in which the

random sound oscillations lead, however, only to a small correction of the free

energy.

The theoretical research on nonideal plasmas needs further clarifications

by experiments. In particular more reliable conductivity data for nonideal al-

kali and noble gas plasmas are needed. This is a preliminary report of research

results, which will be communicated later in form of publications.

3
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II. CONOUCTIVITY OF NHOtIDEAL PLASMAS IITH MNY-PARTICLE INTERACTIONS

By

H. E. Wilhelm

ABSTRACT

The dependence of the electrical conductivity of nondegenerate,

dense plasmas on the nonideality parameter, y - Ze2 n /3/KT (ratio of

Coulomb interaction and thermal energies), is derived by summing the

probabilities for v-body interactions (v - 2,3,4,...) of the elec-

trons. As an application, the dimensionless probability coefficients

for binary and triple Coulomb interactions are calculated by means

of simple physical models, and a conductivity formula for moderately

nonideal plasmas (0 < y < 1) is derived in which all parameters are

known. The theory is shown to agree with recent experimental data.
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INTRODUCTION

High pressure plasmas (101 bar ; P . 106 bar) produced by shock wave

compression are now of considerable technical interest. A large number of

publications 1- 10 are concerned with the measurement of the anomalous electrical

conductivity of proper nonideal plasmas (10- 1 , y ! 1). Theoretically, however,

only the conductivity of ideal (y - 0) and weakly nonideal (y << 1) plasmas is

adequately understood.1 1 ,12 The degree of nonideality of a fully ionized

plasma is defined by the interaction parameter y, which represents the ratio of

average Coulomb interaction (Ze2 n 1 /3) and thermal (KT) energies (n - electron

density, Z = ion charge number, e = elementary charge),

y = Ze2n1/3/KT = 1.670 x 10-3 Zn /3T-  [e.s.u.] . (1)

The conductivity theories of ideal and weakly nonideal (0 < y << 1) plasmas

break down for y > 1071, since the Debye radius,

D = [Z/47r(l + Z)] 1/2 y-1/2 n- 1/3 _ Y-1/2 n-1/3 (2)

loses its physical meaning as an electric shielding and Coulomb interaction

length. This is seen from the number of electrons ND in the Debye sphere of a

scattering ion, which is no longer large compared with one for y > 10
-1

ND (4n/3)[Z/4w(l + Z)]3/ 2 Y- 3/2 _ Y-3/2 (3)

For strongly nonideal conditions, n > 1020 cm- 3 and T = 104 .K, we have

y > 0.775, D < 4.881 x 10- 8 cm, and ND < 4.87 x 10- 2! Another reason for the

inapplicability of the conductivity theory of ideal and weakly nonideal plasmas

to proper nonideal plasmas is the standard assumption of (shielded) binary

Coulomb collisions (v = 2), whereas, in reality, the conductivity is determined

by many-particle interactions (v = 2,3,4,...) for y > 10- .

5
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The many-body inLeraction is one of the classical, unsolved problems of

physics. For this reason, we calculate the conductivity of nonideal plasmas

and the probabilities for many-particle interactions by means of dimensional

theory. 1 3 ,14 This approach gives the exact dependence on the relevant dimen-

sional plasma parameters 13 ,14 and numerically correct results up to a dimen-

13,14 0sionless coefficient, 1
' which is in general of the order 100. The plasma

is assumed to be fully ionized and nondegenerate, i.e.,

2)3/2 15T 3 /2

n=Zn i < n2(2rmKT/h ) 4.828 x 10lST3 (4)
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ELECTRICAL CONDUCTIVITY

In a system of reference in which magnetic fields are absent, a linear

electric current response j - oE exists, provided that the generating electric

field is weaker than the critical plasma field for electron heating. For any

gaseous, liquid, or solid plasma, the electrical conductivity a - is

given by

o = (ne2/m)T , (5)

since the electrons of mass m << M dominate the electric current transport in

plasmas. The interaction frequency T of the electrons is the sum of the

interaction frequencies T for the v-particle interactions,
V

N
T X - (6)

v=2

-l
since the probabilities (frequencies) T1 for many-particle interactions of the

order v are additive (v = 2 for binary, v = 3 for ternary, etc.). N is related

to the total number N* of (charged) particles of the system by N = N* - I >> 1.

-1For physical reasons, the conductivity o[sec I of a fully ionized,

classical plasma can depend only on the dimensional plasma parameters

3/2 1/2 -l1 -3 2 -2
e[cm gr sec ], m[gr], n[cm 1, KT[gr cm sec ], and the characteristic

dimensionless constant Z = n /n(KT = thermal energy). The conductivity a and

the parameters e, m, n, and KT have the dimensions V(L = dimension of length,

T = dimension of time, M = dimension of mass:

V[a] = T - I , V(e] = L3 / 2MI/2T- I ,1 m = M , D[n] = L - 3 , D[KT] - ML2T - 2 . (7)

Dimensional theory is based on the axioms of Dupr. 15
'
16 Accordingly, the

secondary quantity a is given in terms of the primary quantities e, m, n, and

KT by
15'1

6
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o = C zeNmN2nN3(KT)N4 (8)

C is a dimensionless coefficient which depends on dimensionless parameters

such as Z = n/n1 , and can only be determined by means of a detailed physical

model. C, is either a true constant of order of magnitude one, Cz 1 1, or It

is a slowly varying function (quasi-constant). Comparison of the powers of the

independent dimensions L, M, and T [Eq. (7)] in Eq. (8) gives the compatibility

equations,

3 1-N - 3N +2N = 0 , -N +N+ N =0 , -N -2N-l .1 (9)2 1 3 4 2 1 2 4 1 4

These are three independent equations (since only three independent dimensions

L, M, and T exist) which determine three of the four powers Ni in terms of the

fourth,

1 1 1

N1 = 1 - 2N , - , N = -N N N .(0)
2 22 -- 3 2 3 4 .(0

Combining Eqs. (8) and (10) yields a conductivity expression a a 0No which

contains a still undetermined power N,

2 1/2 2 1/3 -N
G = CZN(ne /m) (e n /KT) (11)

In order to understand the physical meaning of Eq. (11), it is rewritten in

the form of Eq. (5),

a ne 2 /mT- I  =N/3 + 3/2 , (12)
V V

where
-1 -ne2 1/2l 21l/ )3(v- 3/2)

T = C 1(ne /m) 1 e n, v = 2,3,4,...N (13)

It is now seen that Eq. (11) or the equivalent Eqs. (12) and (13) represent the

conductivity of a hypothetical plasma, in which each electron experiences only

8



many-body interactions of a fixed order v, since the probability for a v-body

interaction has the n-dependence

T- 1 = 2,3,4,. N (14)

For example, for a hypothetical plasma with 2-body interactions only (so-called

ideal plasma), Eqs. (12) and (13) give

2 -I -1 -1 4 -1/2 -3/2a2 = ne /m2 , 2 2  
e m n(KT) , (15)

where the dimensionless coefficient is known from the kinetic theory of binary

collisions, 11 Cz2 = (3/4)(2/r) /2/Z in A, i.e., CZ2 is a quasi-constant which

varies only slightly with n via the Coulomb logarithm in A.

-i
Since the probabilities T for the individual v-body interactions areV

additive, Eqs. (12) and (13) result in the following formulas for the inter-

action frequency T = E- I and the conductivity a = ne /mT of actual plasmas,
V

in which v = 2,3,4,...-body interactions take place:

-1 N -1 30v - 3/2)
T- = C p y - (16)

v=2

~N

a = ne(/[m i 3 - 3/2)] (17)

v=2

where

Zv (4) 1/2 3 v - v = 2,3,4,...N , (18)

2 One2/m)1/2 1Ze2n/3/KTw =(4n/i) , y =Ze (19)

are dimensionless coefficients, the plasma frequency, and the nonideality

parameter, respectively.

In order to expose the many-body effects (v > 3) of the nonideal plasma

for comparison with the corresponding formulas of binary kinetic theory (v - 2),

9



Eqs. (16) and (17) are rewritten as

T-1 = m-1/2e4n(KT)- 3/2[Cz2-1 + N Cz1(y/Z) 3(v - 2)] (20)

m-1/2e-2 (KT)3 /2 /[CZ1 + N CZ1(y/Z)3 (v - 2)] (21)
v 3

Equations (20) and (21) give the interaction frequency and conductivity of

nonideal plasmas in terms of a series in y, which converges rapidly for

0 < y < I and converges for any y > 1, since it is finite (1 << N < -),

N - -1 6 -1 9-1 .... 3(N-2)
Czl(V/z ) - Z3(Y/Z) + CZ4(y/Z) +CZ 5 Y/Z) +.. . (22)

v=3

-1 -1
For ideal plasmas, y - 0, Eqs. (20) and (21) reduce to T1 T2 1 and a = a2,

in accordance with the kinetic theory of binary interactions. For weakly

nonideal plasmas, y << 1, Eqs. (20) and (21) show that T- Z T21 and a ; a2 .

For moderately nonideal, O1  - y ;- 100, and strongly nonideal, 100 < Y < 7,

-I
plasmas, the electron interaction frequency T increases, and the conductivity

decreases considerably - and by orders of magnitude - respectively. These

1-10
theoretical results are in agreement with measurements on nonideal plasmas,

which exhibit considerably smaller conductivities than expected from binary

collision theory.

It should be noted that Eqs. (16) and (17) or (20) and (21) are applicable

to nondegenerate plasmas only, i.e., to densities n < n or interaction parameters

- /3 Ze2/h 2 -1/2
yf=2 KT/2m)172 =2.823 x 10 ZT (23)

For a physical interpretation of the above results, the partial collision

frequency in Eq. (13) for the v-body interaction of a conduction electron with

10



v-i other charged particles (e,i) is rewritten in the form

-i -- v-i-

(nQr) v/r , v 2,3,4,...N (24)

where

n - ni , Z 1

v (KT/m)l/2

r e2/KT (25)

- (e2/KT)
2

are, as to order of magnitude (-), the electron or ion density, the speed of

the conduction electron relative to the interaction partners (e,i), the Coulomb

interaction radius, and the Coulomb scattering cross section, respectivqly

(Q = n2). The bar designates the thermal average.

-- 3In Eq. (24), Qr [cm ] is the interaction volume of one scattering partner,

w = nQR [1] is the spatial probability for a binary interaction, w 
-I

(nQr) [1] is the spatial probability for v-1 simultaneous binary interactions

(in a At - r/v) of the conduction electron with v-1 other charged particles

(v-body interaction), and v/r [sec- I] is the frequency of interactions of the

conduction electron, which occur at distances r. Accordingly, the frequency for

a v-body interaction of a conduction electron with v-1 other charged particles

is

-1 V-1 -

- v / , w nQr , v=2,3,4,...N . (26)

'r =w v/

|,v



APPLICATION

For the practical use of the conductivity formula [Eq. (21)], the dimen-

sionless coefficients C have to be determined either experimentally or by

physical arguments, since a complete kinetic equation for many-particle Coulomb

interactions is not available. For moderately nonideal plasmas, the conductivity

is in good approximation given by Eq. (21) as

(T3/2
oy 1/2 2 (K-i 3/2 3] 0 < y < 1 (27)

m /eL2 ( + CZ3 (Y/Z)

6
since the next higher term in the denominator is of the order y . Thus, for

0 < y < 1, it is sufficient to calculate the conductivity of nonideal plasmas

from a physical model of two- and three-particle Coulomb interactions. In this

case, only two dimensionless constants, CZ2 and CZ39 have to be determined.
For ideal plasmas, the coefficient CZ2 has been evaluated by means of the

Boltzmann equation for an unshielded Coulomb potential $ = Ze/r (Rutherford

scattering cross section) as CZ2 ' Z 1/in A, where A - [1 + b max/bo)2]1 /2 and

b = Ze2 /3KT (see, e.g., Ref. 11). Different authors prefer either the mean
0

11 1/3 12ion radius, bmax = (3Z/47n) or the Debye radius, b D, as upper
max ,max

impact parameter in order to avoid the Coulomb divergence of the binary colli-

sion integral. Accordingly, either A = [1 + 9(3Z/47r) 2/3y-2 I /2 or 1 2

A = [I + 9(Z/47r(l + Z))y-3l /2. For both choices, in A - 0 for y > 1 and

in A 1 1 for Y < 1.

For a classical nonideal plasma, 0 < y < 7, a physically meaningful Coulomb

logarithm is obtained by evaluating the binary collision integral for a shielded

Coulomb potential P = Ze exp(-r/6)/r (Wentzel scattering cross section). This

approach does not require an artificial cutoff of the impact parameter and

gives
1 5

C = (3/4)(2/7)1/2 /Z in A , (28)

12



where
15

A = 8KT/(h2 /M6 2 ) >> 1 (29)

for nondegenerate plasmas. A is proportional to the ratio of thermal (KT) and

quantum potential (h2 /m62 ) energies of the electrons, since the scattering in

the shielded Coulomb potential is a wave-mechanical process (independent of

n : i).15 Equation (29) contains not only the effects of binary interactions

at distances r : 6 but also the collective many-body interactions at distances

r > 6.

The electric shielding length 6 of the Coulomb potential of the classical,

nonideal plasma can depend only on Z and the dimensional parameters e, m, n,

and KT. Dimensional analysis shows that a 6N with a still undetermined power N

exists which is independent of m,

6N = CZNn- /3(e2n /3/KT) . (30)

The interaction length is the linear superposition 6 = 6N1 + 6 N2 since 6 has

to satisfy the limiting conditions,

1/2 -1/2 -1/36 = [Z/4w(I + Z)]/y- n , y<< 1 (N = 1/2) , (31)

6 = (4wn/3Z) -1/3 9 y - 1 (N 0) , (32)

corresponding to the Debye and mean ion radii, respectively. Elimination of

the dimensionless constants by means of Eqs. (31) and (32) leads to the shield-

ing length

= (4Trn/3Z) -1/3[ + (4/3Z)1/3(Z/4n(l + Z)) 2 I .
/2  (33)

By Eq. (29), A >> 1 for 0 < y < 1, and A > A(n) a 4n(3Z/) 2/3for < Y < .

13



It is seen that Eqs. (29) - (33) provide a satisfactory theory of the Coulomb

logarithm of nondegenerate nonideal plasmas.

In order to calculate the coefficient CZ3 for t

(e-i-e collisions are disregarded consistent with the disregard of e-e colli-
-i

sions in the evaluation of CZ2 ), application is made of the model Eq. (24)

which yields
-i - v-l-

'v 1 (niQeire ) Vei1 rei /0 < y<i , (34)

where

i
n =n/Z ,

Vei = (4/3)(8KT/m)I (
2

(35)
- 2

r ei Ze2/3KT

2 2
Qei = (n/4)(Ze /KT) in A

15
are the exact thermal averages known from kinetic theory. Comparison of Eq.

(34) with Eq. (13) shows that

1/2 ni 2 v-1l-1CZv 4(8/7)I(- Z in A)-z-0 < < • (36)

Accordingly, C-  (4/3)(w/2) i 2Zin A for v = 2 in agreement with Eq. (28), and
Z2

for v = 3

- /1/2z3 2CZ3 =(/9)(12) Z (iA) 0 < y <1 (37)

Substitution of Eqs. (28) and (37) into Eq. (21) yields for the electrical

conductivity of moderately nonideal plasmas:

(3/4)(2/i) /2(KT)3/2 0 < y < (38)

m Ze/2ze2 [in A + (n/12)Z-l (in A) y '

14



The Coulomb logarithm, Xn A, is evaluated in Eq. (29) in dependence of n, T, and

Y.

Equations (34), (36), and (37) are based on binary e-i and triple e-i-i

collisions and collective many-particle interactions which are considered

through the shielded Coulomb potential with the interaction length 6 = 6(n,y),

Eq. (33). The approximately equal signs in these equations are a reference to

the disregard of binary (e-e) and triple (e-i-e) collisions. Furthermore, we

have restricted the applicability of the results to moderately nonideal

(0 < y < 1) plasmas, since the Coulomb logarithm has been calculated without

considering the influence of triple collisions. The latter effect is in all

probability not quantitatively significant since Zn A is a slowly varying

function of A. A more accurate determination of the dimensionless coefficients

C Z2 and C Z3 has to be postponed until a kinetic equation for nonideal plasmas

is available, which takes into account not only binary but at least also triple

interactions and correlations.

10
The experimental data for nonideal alkali and noble gas piabmas

(0.1 < y < 1) indicate that the electrical conductivity is roughly an order

of magnitude smaller than predicted by the theories of ideal and weakly

nonideal12 plasmas. In Fig. 1, isobars of the dimensionless Coulomb conductivity

a* = ml/2e2o/(KT)3/2 are reproduced versus the number of electrons in the Debye

sphere, ND = 47D 3n/3 - y-3/2 [Eq. (3)], showing (1) conductivities according to

the ideal plasma theory (b = D), (2) computer conductivities from molecular

dynamics and Monte Carlo methods (with error estimates) by Valuev and Norman,
16

and (3) experimental conductivities for a cesium plasma at a pressure

p = 5 x 104 Pa by Dikhter et al.1 0 Conductivity curves based on the present

analytical theory [Eq. (38)] are shown for (4) lithium and (5) cesium plasmas

at a pressure p = 5x 104 Pa for comparison.

15
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Figure 1 demonstrates that the theoretical conductivity values from

Eq. (38) are correct as to order of magnitude and lie well within the errors

of the experimental data10 ,1 7 and the computer experiments. 16  Equation (38)
predicts a slight decrease of a* for ND < 0.1, which is due to the contribu-

tions from the triple interactions [Fig. 1, curves (4) and (5)]. This effect

17
was observed by Kulik et al. in measurements on cesium plasmas.
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III. CONDUCTIVITY OF NONIDEAL CLASSICAL AND QUANTUM PLASMAS

By

H. E. Wilhelm

ABSTRACT

The electrical conductivity of fully ionized, moderately nonideal

Ze2 1/3
plasma with Coulomb interaction parameters 0.1 < y ! 1, where y =  n /KT

is the ratio of Coulomb and thermal energies, is calculated for displaced

Maxwell and Fermi electron distributions, respectively. The electrons are

scattered by an effective Coulomb potential *(r) = Zer -exp(-r/6), which

considers binary (0 < r < 6) and many-body (6 < r < -) interactions. The
( /Z-1/3 -N~

shielding distance is given by 6 = a(47n/3Z) with a = oy-1 for classi-

-1/3 -N -Mcal plasmas and 6 = 8(4nn/3Z) with = oy r -1 for quantum plasmas,

2 1/3 2-1 2/3where r = Ze n l im n is the ratio of Coulomb interaction and quantum

potential energies of the electrons. It is shown that the resulting conductivity

formulas are applicable to densities up to four orders of magnitude higher

than those of the ideal conductivity theory, which breaks down at higher

densities because the Debye radius loses its physical meaning as a shielding

length and upper impact parameter.

19
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INTRODUCTION

The theory of the electrical conductivity of fully ionized plasmas1- 3 ) based

on the Boltzmann equation, the Fokker-Planck equation (derived by expanding the

binary collision integral for the small, successive velocity changes of

Coulomb scattering), or the Lenard-Balescu equation (taking into account the

dielectric properties of the medium) is in agreement with the experimental data

for rarefied high-temperature plasmas, y<<l. The interaction parameter is

defined as the ratio of (average) Coulomb interaction (Ze2 n /3 ) and thermal (KT)

energies (n is the electron density and Z the ion charge number),
Z2n1/3 O-3zn1/3/

y = Zen /KT = 1.670 x10 Zn T

in cgs-units which will be used throughout. The conventional transport calcu-

lations 1-3) give an electrical conductivity of the form a - (KT)3 /2 /m 1/2 e2ZA D

2 1/2=for classical ideal plasmas, where l= [I + (D/po) I D/p for D>>p0 . D is

the maximum impact parameter for which the Debyi length is used, and po

is the average impact parameter for 90' deflections (Landau length), p = Ze 2/2KT.

The conditionlD>>l or In1 01 is satisfied only for not too low temperatures

T and not too high densities n.4) Conductivity formulas with this Coulomb

logarithm break down for large interaction parameters y and densities n, since

the Debye radius

D = [Z/4(l + Z) 1/2y-i/2n
- I/3

becomes smaller than the atomic dimension 10- cm and, thus, completely loses

its physical meaning as an electric shielding length and maximum impact parameter.

4. 0 -8 20 -3
E.g., for T = 10 K, y>lO0 and D<10 cm if n>l0 cm . Moderately nonideal

plasmas with y-l are readily generated through shock wave compression and exhibit

conductivities of the order a - 102mho/cm5 -6 ) which are much smaller than

those which would be obtained by applying the conductivity formula for ideal

plasmas in the nonideal regime.
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Although there are some bulk measurements of the electrical conductivity

5-8)
of nonideal cesium and noble gas plasmas available , theoretical explanations

of these results are still missing. The momentum and energy transport in

weakly nonideal plasmas, y <<I, was treated by Wilhelm9 ) by means of an

exponentially shielded Coulomb potential, which permits to consider not only

short-range binary (r I D) but also long-range many-body (r > D) interactions. This

interaction model was used shortly afterwards by Rogov1 0 ) for the calculation

of the conductivity of weakly, nonideal argon and xenon plasmas with Debye

shielding.

For moderately nonideal plasmas, 0.1 < y s 1, various phenomenmlogical approaches

have been used to extend the conductivity formula of ideal plasmas, e.g., Goldbach

et al 11) multiply the Debye length D with a free parameter x(p)which is chosen

to match the experimental data, i.e. to compensate for the too rapid decrease of

D with pressure. A kinetic equation has been proposed for nonideal plasmas

12)
by Klimontovich 2

, which considers spatial correlations and temporal retardation

in the collision integrals. This equation appears to have not yet lead to transport

coefficients because of the mathematical difficulties associated with its solution.

In the following, the momentum relaxation time and the electrical conductivity

of (i) classical and (ii) quantum plasmas is calculated for intermediate non-

ideal conditions, 0.1 < I 1 1. For this region of interaction, the concept of

Debye shielding already breaks down since the number of particles in the Debye

sphere 4rD 3/3 is no longer large compared with one for y > 0.1. This difficulty

13)
can not be remidied by replacing D with the quantum mechanical shielding length

(h = 2rt = Planck constant),
1/2 T2 3n 1/3

DF =(ra k , a = - - , k=2'T(-

0 2 k =2, -- 8
which is too small as D in most high pressure plasmas, e.g. DF - 10- 8 cm

for n = 1020 cm-3  From the definition of the mean particle distance, it is clear

that the mean ion distance 6 - n -1/3 separates the region in which an electron
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experiences few-body encounters (r 5 6) from the region in which an electron

experiences many-body interactions (r > 6) in a nonideal plasma, as long as

6 > 10-8cm (ni < 1024 cm- 3). Thus, the mean ion distance evolves naturally

as the characteristic interaction distance for nonideal plasmas, for which

Debye and Fermi shielding fail. We demonstrate mathematically that 6 
m y n il/3

with0 N < for classical plasmas and 6 a y-N -Mni-I /3 with 0 < M for

quantum plasmas (r = Ze 2n/3/tfmln2/3), i.e. y-N _ 1 and M 1are correction

factors which are insignificant since the plasma conductivity depends logarith-

mically on 6.

We calculate the electrical conductivity of plasmas with (i) Maxwell and

(ii) Fermi distributions of the electrons, when all ions have the same charge

number Z. The electrons are assumed to be scattered by the exponentially
-i

shielded Coulomb potential 0 = Zer exp(-r/6) which takes many-body interactions

at distances r > 6 into account. The considerations are applicable only to

moderately nonideal conditions, 0.1 < y i 1, up to densities n << 1024 cm
- 3

Thus, the following theory is limited to densities n well below the electron

density in (solid) metals.
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PHYSICAL FOUNDATIONS

The electrical conductivity a of any gaseous, liquid, or solid medium,

in which the electrical current transport is due to electrons, is proportional

to the electron density n and the relaxation time T of the average momentum

<mv > of the electrons (m is the electron mass and e > 0 is the elementary

charge)

a = (ne 2/m)T. ()

The relaxation time T is determined by the scattering potential and the

(classical or quantum statistical) kinetics of the electron gas in the electric

field.

In nonideal plasmas, the region 0 < r 5 6 of binary and few - body

collisions and the region 6 < r < - of many - body interactions are separated

by the electric shielding radius 6. Dimensional theory gives for classical

(n << n) and quantum (n n ) plasmas (see Appendix):

6 a(3Z/4nn) I /3, n<n , (2)
-N(3

ao ,L 0 < N 1 -2 (3)
0

and 1/3<
6= (3Z/47rn) I

, n > n , (4)

a oF- y -N 0 < M,N (5)

where N 1/3 M
o= Z (4n/3Z) /[4w(I+Z)] ao = Z (6)

fi = 2(2nmKT/h2)3 /2  (7)

The nonideality parameters of the classical and completely degenerate plasmas

are defined by

= Ze2nl/ 3/KT , = Z 2 l/3/ 2 -ln2/3 (8)
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The classical formulas (2)-(3) are the special case M - 0 (Bo- a ) of

the general quantum-mechanical Eqs. (4)-(5). Eq.(2) becomes the Debye radius
4)-

of the weakly nonideal (y<<l) classical plasma for N = , 6(N- )-D, whereas

Eq.(4) becomes the Fermi radius13) of the completely degenerate (n>>n) plasma

for M = and N = 0, 6(M--4, N=O)-D For M=N=O, Eqs. (2) and (4) reduce to the

shielding radius of the strongly nonideal plasma, in which the kinetic energy

2 -1 2/3 1/3
(KT or -2 m n ) of the electrons is negligible, 6(M=N=O)- Z/47rn) , which is

the mean ion distance up to a factor ao= Bo - 1. For these reasons, the powers

M and N in Eqs.(2)-(6) are limited to the interval 0 _ M,N < . For non-solid

(n << 10 24cm - 3) plasmas of intermediate nonideality, 0.1 < y 5 1, which implies

1 < r 10 2since F = (KT/2m- n 2/3)y, extremely simple relations hold as to order-

of-magnitude:

t(y) - 1, 6(y,r) - 1, 6 ~ (3Z/47n)1 /3  (9)

Based on the above considerations, the scattering of electrons by Z-times

charged ions in plasmas of intermediate nonideality is described by the shielded

Coulomb potential

-1
4(r) = Zer exp(-r/6), 0 < r < , 0.1 < y 5 1. (10)

which contains the binary and few - body collisions at distances 0 < r ! 6 and the

many - body interactions at distances 6 < r < - . A similar Coulomb potential is

used in the conductivity theory of metals, although the use of such a "binary

quasi-potential" is questionable for densities n > 1022 cm-3

The differential cross section o(8,g) for the scattering (- g*-) of

electrons by the potential (10) is in the center of mass system1
4)

a(8,g) (Ze 2/2m) 2/[g2 sin 2(8/2) + u 2 2  u ii/2m6

e i'~ andwhere 0 = (g, ), g = Ve -vi 9 ean
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the electron and ion velocities before and after the interaction are designated

by v and v* , respectively. The speed u corresponds to a de Broglie
e,i e,i

wave length of the order X - 6. For u - 0 or 6 + , Eq. (11) reduces to the

Rutherford cross section.
4 )

The scattering cross section a(e,g) is strictly valid only in the Born

14)approximation . Contrary to what one might expect in general for the latter,

Eq.(ll) describes in good approximation the scattering in the exponentially

decaying potential (10) because of the peculiarity of the Coulomb interaction.

The Coulomb interaction * - 1/r has the unique property that the Born approximation

and the exact wave mechanical approach give the same scattering cross section
14 )

(identical with the Rutherford formula). In the region 0 < r < 6, the interaction

potential(10) is practically Coulombic, and thus the Born approximation gives

the correct solution. In the region 6 < r < -, the interaction potential (10)

is effectively screened, i.e., the Born approximation gives the correct solution

because *(r) is small. In the transition zone r a 6, the Born approximation

holds fairly well for reasons of continuity.

The relaxation time T is obtained by evaluation of the collision integrals

for the electron momentum mv for the (i) classical and (ii) degenerate plasma,
e

respectively. Both in the cases of classical and Fermi statistics, the particle

velocities ve,i and before and after the interaction are interrelated by the
e~i e ,i

classical conservation equations for momentum and energy.
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CONDUCTIVITY OF CLASSICAL PLASMA

According to kinetic theory, the average momentum density nm(<V e>-<v >)

exchanged per unit time between electrons and ions, interacting with the Coulomb

potential(1O), is given by the collision integral for my, which determines

the momentum relaxation time T

-nm(<v > - <V.>)/Te

m f.f'f ve[fe(v*) fi(v ) 
- fe(ve) fi(v 1 g o(eg) dR de d vi (12)

The scattering cross section o(e,g) is given in Eq~ll) and the solid angle element

is dQ = sin 6 dO d. In response to an applied electric field i, the electrons
-+

and ions drift with velocities <v > and <v i> so that their distribution functions
ei

are displaced Maxwellians,

f ( 3/2 1 + < +>2/Ki(1
sv n (m /2irKT ) exp[--m (v - , s-e,i. (13)
S 5 5 5 5

Eq.13) represents a 5-moment-approximation to the nonequilibrium solution of the

Boltzmann equation. The perturbations of fs (v s) due to viscous stresses and

heat flows are neglected in Eq.(13), since they yield only corrections of

higher order to the conductivity.

The collision integral (12) is integrated by standard methods9 ) for subsonic

I 2KT/m)1/2,
drift velocities, I <v > - <v.> < (2KT/m) with the usual approximations

e I

(mi = mem/(m + mi) Me -m, T m [(Te/me) + (Ti/mi)] T T).
e es es e

. or supersonic drift velocities, a linear response J oE between current density

J and electric field t does no longer exist.9 ) The resulting relaxation time is
r 17)

given by:
-1 8 1/2

-= (2KT/rm) ni

Tr 2 2Q = Ze2 KT)2 L (15)

L = e 1  
, (16)

where

A 2KT/mu2= +2(8mn)(4nn/3Z) -2/3KT (17)
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by Eqs.(2) and (11) for the classical plasma. Furthermore

El(x) = r - In x - E (-1) x /m(ml) (18)
m=1

is the exponential integral of order one (r* = 0.477.. = Euler's constant). 18)

The latter satisfies the inequalities, for x 
> 0,18)

eX( x X -1
Ao n(l + 2/x) eXE1 (x) < In(l + l/x),(l + x)- < e E(x) < x • (19)

Accordingly, Eq. (17) gives formally for small and large arguments x A-1,

L A In A, A >> 1 ; L = A , A << . (20)

Rewriting A in terms of the thermal and quantum potential energies shows that

for classical plasmas

A=8E/E >> i, E KT, E -2/m6 (21)

T Q T Q

Combining of Eqs. (14)-(17) with Eq.(1) yields the desired electric

conductivity of the classical plasma of intermediate nonideality, 0.1 < y 1:

a = 3(KT) 3/2/2(27im) e2 ZL (22)

where

L = In[8 F 2 a+2(4nn/3Z)-2/3KTI, A >> 1, (23)

by Eqs.(17) and (20).

The conductivity formula (22) differs from the conductivity of the ideal

plasmaI- 3 ) mainly through the term L. The latter has the form of a Coulomb

logarithm, L = In A for A >> 1, i.e. for all densities n and temperatures T for

which the plasma is nondegenerate, ET > EQ, Eq.(21). Numerically,

A -3.482 x 10 11a +2(n/Z)- 2/3T . (24)

The corresponding argument AD = 2KT D/Ze 2 of the ideal Coulomb logarithm1- 3 )

In AD9 is

AD = 1.464 x 10
4 z-l(l + Z) n-1/2 T3/2 (25)
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Table I compares A of the nonideal plasma and A.D of the ideal plasma for large

densities n and the typical temperature T - 104 K. It is seen that tn AD of

the ideal plasma is unacceptably small for densities n > 10 cm , hereas

22 -3
?n A of the nonideal plasma has reasonable values up to densities n < 10 cm

if T = 104 .K. The conductivity formula (22) holds, therefore, for densities n

up to 4 orders of magnitude higher than the conductivity formula of the ideal

plasma. Eq.1(22) is not applicable to n - T regions for which A << i, i.e.

ET << EQ, which vvld imply degeusrate electrons.

TABLE I: A and A D versus n for T = 104 0K, = 1, and a - 1.

nlcm- 3 1 1018 1020 1022 1024

A 3.482 x 103 1.616 x 102 0.750 x 10 0.348 x 00

AD 1.035 x 101 1.035 x 10 1.035 x 10-1 1.035 x 10- 2

The conductivity formula (22) becomes in cgs - units or practical units
011 -li

(9 x sec = 1 mho cm-l),

a = 1.394 x 108 T3 /2 /Z Zn A [sec- 1 1.549 x 10- 4 T 3/2/Z Zn A [mho cm- I  (26)

where A is given in Eq.(23). Accordingly, if T = l04 K and Z = 1, a = 1.899 x 101

mho cm- I for n = 1018 cm
- 3 and o = 3.046 x 101 mho cm

- 1 for n = 1020 cm
- 3

In Fig. 1, isobars of the dimensionless conductivity * = m1/2e 2 /(KT)3/2

are repor.uced versus the number of electrons in the Debye sphere,

D=4D3  -3/2
N D = 4TDn/3 -Y , showing (1) conductivities according to the ideal plasma

4
theory , (2) computer conductivities from molecular dynamics methods (with er-

15 16
ror estimates) and experimental conductivities for (3) Cs and (4) Li plasmas

at p = 5 x 1C4 Pa. Conductivity curves based on Eq. (22) are shown for (5) Li

and (6) Cs plasmas at p = 5 x 104 Pa for comparison. It is seen that Eq. (22)

is in good agreement with the machine calculations 15 and in reasonable accord

16
with the experimental data

28



-4

0
4

-4

u
4

co

.0 uA
Jk

C6 9: co

0 u

0 0

, -0 m

4.
0~ co
U 0

0. a 00
,,rr

#4 4 4 0rd

N- - °.. 0

dd 0 5
A

1-440

. a m

L' O ,,'- -

C I.. "" 00

b"4) 4

.,,,,i

(I % 4' g

.1 4.' ,I /



CONDUCTIVITY OF QUANTUM PLASMA

The electrons in a plasma become degenerate if their thermal DeBroglie

wave length is larger than the mean electron distance, i.e. at densities

15 3/2
n > 4.828 x1 T

E.g., for T = 104 *K, degeneracy requires n > 5 x 1021 cm-3 . In view of their

large mass mi >> m, the ions can be treated as classical. The momentum relaxation

time T of the degenerate electron gas is determined by the quantum statistical

19)
collision integral for mv e

- nm(<ve> - <vi>)/T =

1 h3 3
mf..f~{f(~* - l * ([1 ii -,

f efe fi(v)[1 - - fe e( f )v)I - I
e1 2m e mae

x g a(8,g) dQ v dv . (27)e 1

where the scattering cross section o(e,g) between electrons and ions is given by

Eq. (11). The solutions to the velocity distributions are the displaced

Maxwellian (13)for the ions (s = i) and the 5-moment Fermi approximation for the

electrons,
3 1 4. 4 --

fe (V = 2(m/h)3 {i + exp[ m&v - <Ve>)2 _ ]/KT }-i (28)

The chemical potential p = p(n, T) is determined by the integral functional

= f(e ) dee e' e

Again, a linear response j = oE exists for small drift velocities <v .>e,i

or weak electric fields E. Integration of Eq.(27) yields, after standard

approximations, for the relaxation time of the degenerate electron gas:

-1 8 2 1/2 e4 Z2n L Q
TKT 3/2 R(n,T) (9

where 1

L Q e E 1I(AQ1), (29)LQ

6 m 4n-2/3 KT Q(nT)Q 3  0) (31)

30



and

Q(n,T) - il+2- : +n< (n (32)
n

4 -2 n
R(n,T) 1/ (1 +2 z + .), n < n(T) , (33)

but

1/2 2 1/2 -4/3
Q(n,T) = 33w n2/ Si-3-) 1.2( 4 + .J, n> n(T) , (34)

n n

131/2 ni 2 1/2 -4/3
1_1rn__n 37w

Equations ( 32) - (33) and Eqs. (34) - (35) result from expansions of the Fermi

distribution (28) in the collision integral (27) for densities n < n(T) and

n > n(T), respectively. Eqs.(32) and (34) indicate that A > 1 for n <<n

2and A Q < 1 for n >> since A Q (2/3)(a/x) A Q(n,T) by Eq. (31).

The series are based on expansions of the normalization integral irt Eq.(29),

which gives the chemical potential p explicitly as a function of n and T,

__- n{ (1+ 2(.) 1I 1- - 3/)( )2 ...] n < n(T), (36)
KT n

(3/ 2 3 _ 
2 3 1/2 4 1/2

1/2 (3, a23[ 7 4/3 - w1 37r n)-/
4 -- [ 2 ( l)/ + n*I n>n(T) (37)

Combining of the conductivity formula in Eq.(l) with the relaxation time of

Eq.(29) yields for the electrical conductivity of the degenerate electron plasma

of intermediate nonideality, 0.1 < Y' 6 1:

a 3(KT) 3 /2 R(n,T)
8(2m) 12e 2Z LQ 

(8

where L Q is given by Eq.(30). In the limiting cases of large and small values of

A1

LQ 3 (,, AQn T) 1, (39)

3Q - (-) AQ(n,T) ,A Q 1< , (40)
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since A, = (2/3)(B/a)2AO by comparison of Eqs.(31) and (17).

For n/fi - 0, Eqs.(38) and (39) reduce to the classical conductivity,

Eqs.(22) and (23), since R(n,T) -, 4/1/f and Q(n,T) - 3/2 for n/ft -0 by

Eqs.(32) - (33). On the other hand, Eqs.(38) and (40) give in the limit of

complete degeneracy, n/f +i

9h3n (41)
9 m2 

(
Z

4

where

A 1 (372Z2 2 ) 1/362 (42)

by Eqs.(34) and (35). Since M =  and N = 0 for n/f -i

2 = IZ/47(1+Z)I(4w/3Z) 2/3r -  
(43)

by Eq.(4), i.e., B1 denending on the magnitude of F E /E Eq.(8).

Equation (43) agrees with the expression for the conductivity of a low

temperature metal.20
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GENERALIZATION

Nonideal plasmas may exhibit not only a high degree of single

ionization but also multiple ionization, due to lowering of the ionization

energies by the internal Coulomb fields, and overlapping of the atomic wave

21)
functions at sufficiently high pressures. In an electrically neutral plasma

with N species of ions (i) of charge Zie and density ni, the electron density

n and entire ion density n(i) are related by

N N
n = Z Zin i ,  n(i) = En (44)

i=l i=l

Since the probabilities T71 for interaction between the electrons and ions
1

of type i = i, 2,.. .N are additive, the momentum relaxation time of the

electrons is in presence of N ion components (i) given by

-i N -I
T = (45)

i=l

From Eqs.(44) to (45) follows that the derived conductivity formulas are

generalized to many-ion-component plasmas by means of the substitutions:

N
Z +ZZ niZi/n(i) (46)

i=l
N

Z2 +Z 2 = Z n Z2 /n(i), (47)
i=l ±

Z-1 +Z Z/Z2 (48)

Since it is extremely difficult to calculate accurately the ion densities ni

in many-component nonideal plasmas, 22)it is advisable to make use of equivalent

approximations [see, e.g., Eq.(9)] to avoid too cumbersomeconductivity expressions

in practical applications.
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APPENDIX

Since adequate methods for the solution of the many-body problem are

not available, we derive the shielding radius 6 of nonideal plasmas from

23)
first principles of dimensional theory . This method gives 6 in dependence

of the relevant dimensional plasma parameters (e, m, n, KT, 1i), but leaves a

dimensionless proportionality constant of order one undetermined, C0 - 1.

The latter can, however be found from the physical argument

6 = D = [KT/4r(l + Z)e 2n] for y << 1, n << n, (Al)

since 6 approaches the Debye radius D in the limit of the weakly nonideal

classical plasma. The dimensions of the characteristic plasma quantities,

which determine 6 of dimension L are given in terms of the fundamental dimen-

sions of length (L), time (T), and mass (M):

Die] = L3 / 2 M 2 T - 1 , D[m] = MD[n] = L 3 , D[KT] = ML2 T- D[l] = ML2 T- . (A2).

A. Classical Plasma. Since in a classical plasma 6 depends on the

dimensional parameters e, m, n, and KT, Dupre's fundamental theorem of

dimensional analysis 23)demonstrates that

6 = Coe  mN2 nN3 (KT)N (A3)

where

k 3 M
21-N 3N + 2N 4 = , 1N + N2 + N4 = 0, -N - 2N4 =0, (A4)

by comparison of the powers Ni of L, M, and T in Eq. (A3). Elimination of

N1 , N2, N3 in terms of N4 = N reduces Eq. (A3) to

S(e2n/3 /KT)-N -1/36C= eO  /K) n (A5)

It is seen that 6 = Con-1/3 for N = 0 (strongly nonideal plasma, y >> 1, with

negligible thermal energy) and 6 = D for N = 1/2 (weakly nonideal piasma, Y << 1).

Accordingly,

c= [41r(1 + Z)]-1/ 2  
(A6)
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by Ec. (Al), Eqs A5) and (A6) are combined in an illustrative form for classical

plasmas:
Zenl/3-N.3Z )1/3 (7

6 = L N (4-- 1/3 , 0 < N < 1/2 (A7)
0 KT 4irfn_

This is Eq. (2) where a (Z) is defined in Eq. (6).O

B. Quantum Plasma. Since in a quantum plasma 6 depends on the dimensional

parameters e, m , n, KT, and 1 , Dupr6's theorem 2 3) gives

6 = C eNI mN2 nN3(KT)N4 - N 5  (A8)
0

where

3 1-N -3N 3 + 2N4 + 2N 5 = 1, N + N2 + N4 + N5 = 0, -N1 - 2N4 - N5 = 0 (A9)

by comparison of the powers N. of L, M, and T, in Eq. (A8). Elimination of NI1

N2, N 3 in terms of N4  N and N5 a 2M reduces Eq. (A8) to
e2n1/3 M

6 = C (e ) N 1 n )-N (Ae- 1)
0 KT r2l 12/3) n .C)

It should be noted that Eqs. (AS) and (A7) are the special case N5 = 0 of Eq.

(AB) and M = 0 of Eq. (AID), respectively. For M = 1/2, Eq. (AI0) reduces to

13)
the Fermi shielding length of the completely degenerate plasma (n >> n).

Eqs. (A6) and (AIO) are rewritten in an illustrative form for quantum plasmas:

N2n/3  Ze2nI /3  -M 1 /3 1

0 = KT 2 m-ln2/3) 4;n ,2N (All)

This is Eq. (4) where ao is defined in Eq. (6).

In the above formulas, the power 0 < N < 1/2 characterizes the nonideality

(N = 1/2 for y << 1, N = 0 for y >> 1), whereas the power 0 < M < 1/2characteri-

zes the degeneracy (M = 0 for n << n ; M = 1/2 for n >> ;). Although dimensional

theory alone does not provide expressions for M and N, it is recognized that a(y)

[Eq. (3)] and a(y, r) [Eq. (5)] are of magnitude-of-order one, i.e. 6 - (3Z/4nn)1/3

for nonideal classical and quantum plasmasof intermediate nanideality, 0.1 < y s 1.
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In the conductivity tl 3ry of metals2, the mean ion radius

r= (3Z/47n)1 /3 is used widely as shielding length of the ion potential,

based on phenomenological arguments. The presented dimensional analysis

provides the first mathematical justification not only for nonideal plasmas

but also for metals.
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ELECTRICAL CONDUCTIVITY OF NONIDEAL QUASI-METALLIC PLASMAS

A. H. Khalfaoui

Department of Engineering Sciences, University of Florida, Gainesville, Florida

Abstract

Electrical conductivity formulas are derived from first principles for fully

ionized nonideal plasmas. The theory is applicable to an electron-ion system with

a i) Maxwell electron distribution with an arbitrary interaction parameter

y = Ze2 n /3KT (ratio of the mean Coulomb interaction and thermal energies) and

2 1/3 2-42/3ii) Fermi electron distribution with an interaction parameter r = Ze n /h2 m n

(ratio of the Coulomb interaction and Fermi energies). The momentum relaxation

time of the electrons in the plasma is calculated based on plane electron wave

functions 4nteracting with the continuum oscillations (plasma waves) through a

shielded Coulomb potential Us W)= e e exp(-r/6s)/r, which takes into account

both electron-ion interactions (s=i) and electron-electron interactions (s=e).

It is shown that the resulting conductivity formulas are applicable to higher

densities, for which the ideal plasma conductivity theory breaks down because

the Debye radius loses its physical meaning as a shielding length and upper

impact parameter. The conductivity obtained for classical plasma is of the form
=* 3/2/ 1/22

a= (KT) /m e and agrees with the ideal plasma conductivity formulac c

with respect to the temperature and density dependence for y/Z - 0, but its

magnitude is significantly reduced as y/Z increases. For quantum plasmas, the

conductivity obtained is of the form O a h3n/m Ze2 , which shows that the

degenerate plasma behaves like a low temperature metal.
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1. INTRODUCTION

The electrical conductivity of nonideal plasmas has been subject to

1-7)
manyexperimentaland theoretical investigations1-. The theory of the electrical

conductivity of fully ionized plasmas, based on the Boltzmann equation,
)

9)the Fokker-Planck ecuation- (derived by expanding the binary collison integral

for the small, successive velocity changes of coulomb scattering), or on the

Lenard-Balescu equation-) (taking into account the dielectric properties of

the medium) is in agreement with the experimental data only for rarefied high

temperature plasmas, y/Z<<l.The interaction parameter y/Z is defined as the

ratio of (average) Coulomb interaction (Ze2n1/3) and thermal (KT) energies

(n is the electron density and Z the ion charge number),

y = Ze 2 nl/ 3 /KT = 1.670 x 10-3Znl/3/T

(cgs-units are used throughout). The convenLional transport calculations

8-10) 1-2)for classical ideal plasmas and weakly nonideal plasmas-- give an electrical
d

conductivity of the form 0 - (kT) 3/2/ml/2e2ZlnAD, where AD = [1+( D)2 1/2 E dD/Po

for >bpo. The impact parameter for 900 deflections (Landau length) is p

Ze2/3KT. The condition, A >>1 or nA -101 is satisfied only for not too low
D D

temperatures T and not too high densities n. Conductivity formulas with this

Coulomb logarithm break down for large interactions parameters Y/Z and

densities n, since the Debye radius

dD = [Z/4 (l+Z)I/2y-1/2n-1/3

becomes of the order and smaller than the mean particle distance n - 1/ 3 for y/Z

101 and y/Z 10 , respectively. Thus d loses its physical meaning

D

as an electrical shielding length and maximum impact parameter. For this

17)
reason, a new shielding length 6 is introduced through dimensional analysis--.

Moderately nonideal plasmas with Y/Z 1 are readily generated through shock
S12-13)

wave compression and exhibit conductivities of the order o10
1-102 mho/cm-13

which are much smaller than those which would be obtained by applying the
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conductivity formula for ideal plasmas in the nonideal regime. Although

there are bulk measurements of the electrical conductivity of nonideal

12-15)
Cesium and noble gases plasmas available - , the formulas are valid only

for small interaction parameters 1 -2 ) )/Z. The momentum and energy transport

in weakly nonideal plasmas (y/Z << 1) was treated by Wilhelmj-16 ) by means of

an exponentially shielded Coulomb potential, which permits to consider not

only short-range binary (r!dD) but also long-range many-body (r>dD) inter-

actions. This interaction model was used shortly afterwards by Rogov
2 )

for the calculation of the conductivity of weakly nonideal Argon and Xenon

plasmas with Debye shielding. Later, Wilhelm-17 ) applied his theory to

nonideal plasmas by deriving a shielding length and Coulomb logarithm which

are valid for 0 < y/Z < 1.

For moderately nonideal plasmas (0.1 < y/Z < 1) various phenomenological

approaches have been used to extend the conductivity formulas of ideal

4)plasmas, e.g., Goldbach et al- multiply the Debye length dD with a free

parameter x(p) which is chosen to match the experimental data, i.e. to

compensate for the too rapid decrease of d with pressure. A kinetic equation
D

19)
has been proposed for nonideal plasmas by Klimontovich-- , which considers

spatial correlations and temporal retardation in the collision integrals, but

does not take into account many-particle collisions. Ebeling et all:used

. 20) .21)

recently kinetic---- and correlaton function- methods to derive a resistance

formula for nonideal plasmas, which is applicable only for y/Z << 1.

Herein, we extend and apply the Bloch28) transport theory to nonideal

plasmas, based on concepts similar to those used for solids 23 ) and liquid

24,25)metals- 2  The application of this model to nonideal plasmas is justified

since a plasma exhibits a quasi-crystalline structure for y/Z > 10- , becomes

a liquid for y/Z 1, and undergoes a diffuse transition into a solid, metallic

state at a critical value yo. The role of the longitudinal phonons in the
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theory of metals is assumed by the quanta of the plasma oscillations (plasmons).

The theory to be presented provides a momentum relaxation time for

i) classical plasmas (n<i, fi= 2(27rmKT/2/j3 ) with an interaction parameter y/Z

and ii) quantum plasma (n>fi) with an interaction parameter r/Z(r=Ze2 nli3 /

-f2m-ln2/3). The results are compared with previous theories and

experiments.
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II. ELECTRON-PLASHON INTERACTION

We consider the electrical conductivity of nonideal plasmas due to the many-

body interactions of the elictrons with longitudinal plasma waves (similar

to the interaction of electrons with phonons in liquids or solids). The

plasma under consideratior, is a continuum of volume Q2 containing N elvectrons

and N/Z ions, which exhibits 3N (high freauency branch) and 3N/Z (low

frequency branch) characteristic frequencies ws(q) of longitudinal oscillations

(s=e,i). The high frequency branch corresponds to electron plasma oscillations

and the low frequency branch are the ion sound waves.

The motion of electrons in a continuum is affected by the continuum

oscillations (many-body interactions). In ideal plasmas, the change in

motion is caused by binary collisions of the electrons with the plasma

particles. In nonideal plasmas, however, the electrons interact withthe

fluctuating Coulomb _ield of all charged particles. Therefore, this

interaction can be treated as a scattering of the electrons by the

random longitudinal waves of the plasma continuum, which are thermally

excited.

As in the theory of metals 24 ' 25)we are considering a free electron

model, which is applicable to nonideal plasmas. For dense plasmas with

Z electrons per ion, the electron wave functions are approximated by plane

waves ~ exp(it.T). The electron energy E is given in terms of the wave

vector k by E-' 2 k2 /2m, so that the Fermi surface is soherical.

th 
Let w (q) be the e eigenoscillation with wave vector q of an electron wave

eh

(e-plasmon) and, w.((I the it eigenoscillation with wave vector q of an ion
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sound wave (i-plasmon). Taking into consideration conservation of energy and

momentum, i.e. fiwdk) = E' - E andq = p' - p, where E', p' and E, are

respec.ively the energy and momentum of an electron before and after a collision

with a plasmon of energy -w(q) and momentum -q, we see that an electron or ion

interacting with the plasma as a whole can emit and absorb plasmons which are

quasi-particles with energy lw(q) and momentum lq.

The quasi-particles or plasmons obey Bose-Einstein statistics, and their

distribution function is

1 (1)
q [ _1w(q) -

exp[L KT -

Let P(k, k') be the transition probability per unit time that upon a collision

of the electron with a plasmon, an electron in a state k moves to another state k' which

is not occupied by any other electron. If f(k) is the Jistribution function of the

electron occupying the state t and f(k') the distribution function of the electron

in the state k', the number of electrons which move from the state k to the state k'

is (Pauli principle)

P(k, k')f(k)[1 - f(k')]

Since there exists always an inverse transition to the above foreward interaction,

the total rate of change in time of f(k) due , electron-wave interactions is

obtained by summing over all k',

6f~jt) = k4
1

. 4 ~ 4.y.4

___6t i {P( k' 'S )f( )[l - f(k)] - P(k , k')f(k )[l - f(k')]} . (2)

The interaction processes are calculated by perturbation theory. According to

26) 27)4
Akhiezer- or Schiff-7, the probability of transition from an initial state k to

a final state t' is

P(, k') = --1Mkk, I2 6 (Ek, - Ek) (3)

Ek, and Ek are the energies of the electron in the states k' and trespectively.

'Mkkjis the matrix element of the transition k*k'. For the absorptlon of a plasmon,

IMkk, is proportional to q, and for the emission of a plasmon it is proportional to
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(Nq + 1). The more remarkable dependence of IMkk, I is on the Fourier transform

of the potential U (r), by means of which the particles in the plasma interact.

Similar to the matrix element of a metal given by Sham and Zima )- , lMkk,l for

electron (s=e) and ion (s=i) oscillations with different frequency w is
5

IMkk, 2 = 2 (q'eq)2 ,Us(q) s-e,i , (4)'Mk" q q Uq)

where - 2 -hs

I = =2sn-s( )  for the absorption of a plasmonq 2m n w(

(5)
-2 -s
-s 2 i(Nq + 1)

2msnss( for the emission of a plasmon

.or plane iaves normalized in a unit volume, the Fourier transform of U s(r)

(e = -e, ei = Ze) is given by
e 47rnsele sl

jUs(q)l = - 2  
, q- IK-KI (6)

s

m is the mass of the particle s, n is its density, Ict5s 2 is the mean square amplitude
s q

th
of the q mode of an oscillation of frequency w s(q), eq is the unit vector direction of

-- *
the propagation vector q, and Us() is the square of the Fourier transform of

the potential (through which the electrons and ions are interacting in the plasma).

Instead of using a phenomenological pseudo-potential-) U (r) with adjustable parameters
5

we describe the nonideal plasma with classical (y/Z) and quantum mechanical (u/Z)
17)

interaction parameters by means of a Yukawa potential with a shielding 
radius--

6 -n-1 /3 (n=n =N/Q. n.=N/Zi):
s s e

e e exp(-r/6 )
U (r) r s=e,i , (7)
s r

where

6, = (4Trn/3Z)- 1/3 U + (4n/3Z)1 /3 [4%(l + Z)]-1 /2 (y/Z)-1 /2} (8)

with 6. = dD for y/Z << 1 and 61 = (4n/3Z)-1 /3 for y/Z >> 1.
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The plasma system consists of two components, electrons and ions where

every charge (-e for s=e and Ze for s=i) is assumed to be uniformally spread

over a spherical cell of Wigner-Seitz type of radius 6 (s=e,i), from whichs

the electrons are scattered in accordance with the exponentially shielded

potential 1s . 6. being defined above, a radius 6 is to be defined in orders 1. e

to take into account the electron-electron interaction. 6 is assumed to
e

coincide with the shortest wavelength Xe 2" /qe for n' n and F/Z>l, and q

is defined by the conservation of the total number of degrees of freedom of

the electron gas, i.e.,

qe

(44)-3 41q 2dq = 3N. (9)
0

For n<n and y/Z <l, the minimum wavelength is obtained through the mean

-1/3
particle distance A - r , where r = (4rn/3) -  

. Accordingly
e e e

2 -1/36 = 2T (18T n) -  
, n>n, (10)

e

6 = (47n/3) - I /3 n<n, (11)e

1. Electron Oscillations. The high freqeuency branch of the space-charge waves

is due to longitudinal electron oscillations. Their frequencies ue (q)(s=e ine

Eq. (5)) are for classical (n<<i) and completely degenerate (n>fi) electrons

W e (q) = p(I + a 2 q 2 )I /2 (12)

2 2 / 2
a =C/W , n<<n (13)

2 32 2a 5 ,F/Wp n>>n (14)

where the speed of sound Cm and the Fermi Speed vF of the electrons are

C =(KKT 112j 2 1/3Cm (KeKT/m) /2 = t(37Tn) /m (15)

and the critical electron density ni and plasma frequency w are given by

2 3/2n= 2 (27rMKT/T2) 2
, (16)

, 1 = ( In 2 /  1/2
= (47Tne /M) , (17)

(re= (C p/C v) = 5/3 for the electrons and m is their mass).
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For all wave numbers, 0 < q < qe 2t/6 the electron oscillations propagate

with frequency w = (,(q) > w in nonideal plasmas.

P

2. lon Oscillations. The low frequency branch of the space charge waves is

due to ions sound waves, which are coupled with the electrons. Since the

ions are nondegenerate, the frequency of the ion oscillations is Lp

w i (q) = v(q)Csq, C = (-) (18)

where

Z(K e/K) 1/2
v(q) = [1 + e 1 1/2 n<<ii , (19)

and 
l+ZyK e (q6e)/(36f)

Id(q) 1, n >>fi (20)

v(q) is a correction factor of magnitude-of-order 1, which shows the influence

of the electrons on the ion oscillation (M=ion mass, Ki C p/C = 5/3 for the

'II

ions) where 0 < q < q i "27 /6.
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III. RELAXATION TIME

The distribution function f(t) in Eq.(2) is not symmetric with respect to the

origin in the 2-space3), since it is'1olarized" by the electric field '. If

is in the x-direction, f(k) has the form
f (1-f)

f(E) = f (E) + , - aE 0' - aE KT (21)

The Fermi distribution function describing the thermal equilibrium of the

electrons is

fo(E) = [i + e(E- )/KT]- I  (22)

where is the Fermi energy,and 4 is proportional to a function CUE) of the energy
22)

E of the electrons---

= e I Iv C(E) (23)x

If equation (2) is changed from the discrete summation over t'to an integral

[where the volume Q is set to unity because the electron plane waves have been

normalized for a unit volume in Eq.(6)] Eq. (2) becomes

t = (21) 3 P( ,') f (V')[1-f(t)]-7 P (tlt)f (t)[l-f (')]d k (24)

The full expressions for P(t,V') and P(t:t) are given by Eqs. (3) - (6). For

absorption of a plasmon,

z~s q2

msksk) mn JUs(6(E'-E-f%) (25)

where

E' = E +Iw ' + ' (26)

For emission of a plasmon,
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p(k:() q(6+l)g2 2 (27)msns ws(q) lsql6E-+a)(7

where

E' = E - ris, ' = q - (28)

Due to the fact that in equilibrium 0 for a Fermi distribution function,

it is easy to show that (detailed microscopic balance for direct and inverse

interactions)

W(k':k) = P(ki'') fo(i')[l-fo()] = P(k:k)fo(k)[l-fo(t')]= W(t,') , (29)

Accordingly, the linearized interaction integral of the Boltzman equation is

obtained by substituting Eq.(21) in Eq. (24), under ccnsideration of the

relation (29). Limiting ourselves to first-order terms in d, Eq. (24) becomes

6f 1 w "', )[€(i '1- (t) ]d k' (30)
6t (27T) 

2KT J

Accordng to 22)
According to Haug--,- a momentum relaxation time exists in a closed system of

particles in presence of an electric field, and the interaction integral can be

written as:

6f f-f 0 = (31)
t T T (1

where the relaxation time r is in general a function of energy E. Hence

,(E (32)
6t

Eq.(32) indicates how the relaxation time T(E) is related to the collision term.

We distinguish the cases: i) A classical plasma of low density n<fi, at any

degree of nonideality y/Z < 1, for which we expect the thermal energy of the electron

to be much greater than 16, e., << KT. In this case, only elastic scattering
S S
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of the electrons by the plasma waves is considered, E' E. ii) A nonideal quantum

plasma with "/Z I I at high densities, n>h, and for which in general,

we can no longer neglect 1% compared to the electron energy E, i.e. for whichs

Ts z KT. It is recognized also by inspecting the relations of the

frequencies to the wave vectors [Eqs. (12) and (18)1 that the effects of the

electron-electron interaction (electron-electron waves) and electron-ion

interaction (electron-ion waves) on the relaxation time are to be studied as

two distinct cases.
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IV. CLASSICAL PLASMAS, n < fl

The two frequency branches of the longitudinal oscillations are given by

Eqs. (12) and (18) for the electron-electron interaction (s-e) and electron-ion

interaction (s=i). The relaxation times T es(E) (s=e,l) are by Eqs. (21), (30),

(32,, (25), and (27)

(Ofo/3E)4)

es(E) (6f/6t) , s=e,i (33)
S

where 2 (2

I6tJ 2 n KT W (q) N q o E' E+lw
= -- 8(INfm')KT - f ())16(E' - Er+ m0)

s s k' q

3-

+ )[1 - f 0 (k')] 6(E' - E -- ns) [1 --- dk' . (34)

For the evaluation of Eq. (34) we assume that a) liw << E (classical plasm),S

3) E' = E, Ik'I = Ikl (elastic scattering) and y) isotropic scattering (no

angular dependence before interaction). With these assumptions, the transformations

in the Appendix A yield with Eqs. (33) and (34),

8 2 /22m n
(E) =es q qDIUs(q) 2 dq (35)

0 Ws(q)(exp( w )

Before evaluating the integral in Eq.( 3 5 ) for the two frequency branches under

consideration,we first observe the behavior of IUs(q)j 2 in Eq.(6). In the

q-domaine, JUq)I 2 is bound between the limits

12222 4
16Tr n ee 

22222

2 2 < U (q) 2 < 16r2 n 2e 2e264 s= e,i , (36)
(1 + 4Tr 2)2 s s

1. Electron-Electron Wave Interaction

For the interaction of the electrons with the high frequency plasma oscillation

of frequency ', (q) rEq. (12) 1, the relaxation time is evaluated by means of Eq.(35),

and the plasmon distribution function N of Eq.(l) as
q
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Y'r 3/2 E3/2

ee (E) = (37)
ee 2i ne I

e

^e q 5 dq

e= d-2 22 2q2) TK 22
( + q 2 (l+ a(qi(exp + a q -)0 eK.

q e 5(38)

h(qe  q \ 0p +] ,)< e<]ef 2i 2 a2)(exP[K-c-(l + a2q 2 ) ] _i)e e

o (1 + a q KT qr

where

4 4h(q) (S - (6/7) = 2n/
-(i 2  e e e (39)+6qe )e e

-35)

in accordance with the mean value theorem for integrals,- since U (q) is bounded
s

[Eq. 36] in the interval (0,q ) and qe is approximated by the mean value of the two limits

of the integral. With a proper change of variables the integral in Eq. (38) is

evaluated (Appendix B) as
4mw

le -- t e( p e aq)

2v 2v
R 200 _ B12e 1 2 B2vp

Re (E, aq) 1 - e + 4 (2v+4)2v! 4 -)4 + 4 (2v + 4)v!
e I (a e) V=i

2v I
4 Ee C B2v e e

(ae)2  i -3 + 2 1 (2v + 2)2v!

r ~B c2v 1
+ 4 1 +2 S

(a3) 4  =- (v + 2)2v!

+ 4 [n C -( + Ep - Ee (40)

(e3 P - 2

B 2 are Bernoulli numbers 2 ) , and

(l'-eD 2 -- 1/2 (41)
p e+()dT e Te ( (41)e
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where dD is the Debye length. By Eqs. (37) and (38), the relaxation time due

to the electron-electron wave interaction is

t (E) =e (1.2)

8Trne4Re (c p aq e

where R e(paq) -1 for n<< ft.

2. Electron-Ion Wave Interaction

For the interaction of the electrons with the low frequency oscil lat ions of frequency

Wi(q) = C q [Eq. (18)], the relaxation time t ei(E) is evaluated by means of Eq.( 3 5 )

and Eq.(18) with v(q)-l, and IUi(q)I from Eq. (6). By applying the mean value

theorem for integrals as in Eq. (38), one obtains

C m 2/2/2 M E /2

Tei(E) ' (43)
2 TKzne I.

where

1 1~0 (exp r1 G] 1

q 2 /W (45)

The integral Ii is of Debye-type"2 ) , which becomes with b = - and bq x,

ix 4dx4q 
-*

Ii1 0 i1xhdx 45 /7T) i 4 Ri(bqi )  (46)

b~q
0

2b4. B2 (b )2v
Ri(bq) =1 - + + , bq < 2n (4.)

32)2v

Here again B2v are Bernoulli numbers--. The magnitudes of b and bq i follows from

the relations,
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Combination of Eqs. (42) and (44) yields, for the relaxation time due to electron-

ion waves interactions:

,2 mK<.EP2

T .(E) = 1 • (49)
8nZe Ri(bqi )

where Ri(bqi)-l for n<<n.

3. Electrical Conductivity.

The electrical conductivity a is related to the energy dependent relaxation times by:
c

21

= <les= , s=e,i , (50)
C m • <

>  
<">

s es

where

<I>es > T es (E)f(E)dE , f f(E)dE = 1 , (51)

0 0

ri =2 ,rE -E/KrFor classical plasmas, f(E) is the Maxwell distribution, f(E) = (KT) I e

4which gives

mV2< K. (kT)

<> = ei (52)

2 n7re 4 KiReCpaqe) + Z KeRi (bq i)]

From Eqs. (50) and (52), we obtain the conductivity for a nonideal classical plasma:

Ke (kT) Y53
= le(53)

c 7T (27rm) te 2
L

where

L = r..R (C , aqe) + Z e Rl(bqi) , (54)

The above results will be discussed in section [VII.
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4. Thermal Conductivity of Nonideal Plasmas.

Charge and energy in a Coulomb system are transferred simultaneously

during the motion of the electrons, no matter whether this motion is caused

by an electrical field or a temperature gradient. In each case both an

electrical and thermal current appear. The same methods used for the

evaluation of the electrical conductivity may also be applied to the thermal

conductivity. They are related by the Lorentz number (T 2/3)(K/e)2 through

the Wiedemann-Franz law which assumes, however, that the collision processes

are such that a common relaxation time exists for an electric and thermal field,

which is always satisfied at high temperature i.e. rw<<KT, and hence

T, K 2  (55)
"T 3 (e)  '(5

C

and the thermal conductivity is simply by Eqs. (53) and (55)
112. 5/2

KeK (71/23 (KT) 5 / 2

A e= (56)

3em 
L

where L is given by Eq. (54).
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V. QUANTUM PLASMA, n>n.

For plasma densities n<n., it was proper to ignore -iwu compared with the
s

energy E of the electrons which is of the order of magnitude of KT. At high

pressures where n>>n, ht can no longer be ignored compared to E.

Our approach to the quantum Boltzman equation follows the Kohler variational

33'
method- , which is frequently used in connection with the resistivity of

metals. Combining the collision term (30) with the electric field I yields

6f 1af
= wkk)Dk (k)]dk' V-,' eE (7t'g- (2) 3KTW - = - xE (57)

Only v appears since E is assumed in the x-direction, E = (E,O,0).

According to Eqs. (32) and (55), (21) and (23), the interaction term

(6f/6t) ani the function are

-L - vx--i eE (58)

af

-eE--E V C(E) • (59)

In order to determine the function C(E), we follow the idea of Bloch

and expand C(E) in a power series of (E - E).

C(E) C (E -C)B - C + CI(E - ) +.... (60)0(60

where this series is treated as a trial function in the Kohler variational method

to determine the coefficients of the series C

By Eq. (C-ll)(Appendix C), the C are determined from the system of equations

I CD= N , (61)
V

with

1 3- i ~ 3-D = ( K  V(E - E) W(t',k)[v'(E' - ) v (E - ) ] d kd k, (62)

(270 3 KT px X X
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and 0

Nn -°(E- )"F(E)dE

0
(63)

Jf 2 ds
F(E) = d/

E=const

where ds is a surface element.

Eq. (14) indicates that for the high frequency branch (electron oscillations) and

n >> i, the frequency w(q)depends on vFP the Fermi speed (high pressure

quantum plasma). Contrary to the classical case where n<<n, in the quantum
34)

case the thermal energy of the electrons is small compared with the Fermi energy- .

Accordingly, the series exoansion (59) is approximated by the first term C . This assumption

is widely used in the transport theory of metals ("Bloch approximation") and gives

good results especially for the electrical conductivity. Eqs. (32) , and (56)-

(61) give as relaxation time in the approximationC(E) C
0

O

o 0 F(E)dE--E NO

es 1 ((2 W ) s d3 , (64)- v k)1-,!]d3 'kdk' 0

(27) 3KTJfvx v x

where N and D are to be evaluated. The integral N in the numerator of:0 00 0

Eq. (62) is of Fermi-type and since the contribution to the intergrai arises in

the vicinity of E =, the limits have been extended to 0 and o Following the

approximation made by Haug 22 ) , we have

No = F(E) +O((KT) 2 ) , (65)

E=E2 2 2 2 2
where F(E) is given in Eq.(61), with v = Ifi k (cosc/n , ds - k sina dct do and

dE/dk ffi k/m (the angles a, and o are defined in Appendix A.). Accordingly,

It 21T3'

F(E) = - cos sina da do E
an 1 j - 3m~2 (6 6)'
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ie.

N=4T .2m3/2( )3/2 2 2/3 'K2

o 3m ,2) ' (ro)67

The denominator D 00of Eq.!B2) contains (j')def ined in Eq. (29), which

contains the transition probability Pdt',it). This latter function has

different forms for the absorption [Eq.(25fl and for the emission [Eq.(27)] of

a plasmon. First consider the case of the absorption of a plasmon with

E' = E + ,sand D =6
00 00

Using Eq.(25) and (29) in the denominator of Eq.(62) we get after

integrating over E

______ ~v 2 q 2 IU(q) 12 gs

3D+ wq f (EXl1- f (E +1 w)M.00 (27r) KTn sm jj* (q 0 0 s

-- E (63)

IL v x J ' hv dE

where E' = E +-hw,, ds' and ds are elements of the energy surface. With

'I 4.
ai = angle between k and the x-direction, y = angle between t' and the

x-direction, e = angle between k and k , and q p=azimuthal angles

around kand t' respectively, ds and ds' are expressed as

2K E

ds' k' siny dy dtp = hLq dq d (

where

-X vcosa' _=k' (cos y+ tan sin cosp),

v VCosl 2E

2t 2 h2

v22
x k cos a 71

t 2V'v kv

58



After evaluating the angular integrals and expressing q, IUs(q) by their
qs

respective expressions in Eqs.(l) and (6), we obtain

D 32r 2 m n e  q f(E)[1 - f^(E +ih - d
S 3 4 mKT - o 2 + q 0 ].) - E dE dq. (72)

The double integral of Eq. (72) is evaluated using the mean value theorem- as

+ -s q 3f (E ) [ 1 - f (E + -' w I - 2 'h(4) 0 -rqE dE dq , O<q < s (73)
- o ( q ) [exp - i]

where

6 4

h(s )(_  =(74)
(1G + 62 2 ) 2 (Ss/(

In Eq.(70), w(q)(s=e) is the dispersion of the longitudinal waves of the degenerate
s

(n>>fi) electrons and f(E) is the Fermi distribution. With the change of variables,

.. .. = ( - KT ee p --- P (75)Y
KT ' KT -s " ' p KT (

which gives
q 3 dq 1 C(2 _ 2)de

(a)
p

E = nKT+ , dE = KT d

lsmm= cKT
2E 2(nKT + )

2 2 h2(C2 2

4mE 4m a2 c 2(nKT +
p

f(E)[l - f(E+1 s)]= e 1 1 [ei 1 ] (76)s (e n  + 1)(1 + e - n  1 e - )  e n + e e n + c + 1

Eq.(72) becomes
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D 32n e4 64 e e 2 C 2[ 2 ] H (K) de
00 2TK -422

I IT(ac P 4m, a 1ep

H ( ) =i dn
-a (e n + 1)(e-n-c+ 1) (77)

where
= € I + 2 ^2

Ce = p e)+ a e (78)

The integral over n in the H-integral is easily carried out and is equal to

E/(l - e- ), while the integral over C is developed in a series of integrals

of Einstein type32 )

C x M ex

ex - 1 2 (79)
C
p

Eq. (79) is evaluated by expanding the denominator in a series of e-x

e V-1
v-n n.V

n=l pn 1 P n

I e n n C] (80)

Substitution of (80) into (77) shows that

D+ o aJi
S n n(81)

n

where the a are to be defined shortly, and the sum over n has only an

few terms. For the emission transition, - , E' - E -N, D- is

obtained from D by replacing q by - q and wsby - ,that is e by - c, and by

adding a factor (-I)n+l to the numerator. Accordingly

D- - 1(-l)na J (82)00 n n
n

The total denominator D - D- + D+  of Eq.(62) is by Eqs.(81) and (82)
00 00 00
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00 n nn

The terms with an even power of e in the integrand of Eq. (77) vanish according

to (83). Only terms of odd power remain whose coefficients are the same as

those of D+  apart from a factor 2. Hence,
00

Ce 2 2 2 c

D 4 ne464 (84)
00 3f 2 mKT(acp)6 (e - 1)2

In the range of pressures and temperatures in which this equation will be applied,

the variables of interest will be e given by Eq(75) and aqe both of which can

be expressed in terms of nondimensional parameters, with qe = 27r/6 e ,
(95)/2(2 2/3(n 1/3( /)1/2 ,  (85) "e e

aq e= (9/5)l1/ (27r) 2 l(n/fi ) 1 1 (Y/Z) 1 2 (5

5/6 -1/3 1/2
£ = 27r2 (n/n) (y/Z)i/ (84)P

The integral in Eq. (83) is a sum of integrals J , v = 5, 3, 1, defined in

Eq.(81), with different coefficients an, namely a 5 =l, a 3 =-2 , a

Hence

D =[J 5 - 2e2 J + C = F( p, aq) , (87)
00 5 p3 Ep 1 \pI e

where
4 4 4
2 ne 6e (88)
37 2 n2KT (ae ) 6

p

The relaxation time for electron-electron wave interaction in a degenerate quantum

plasma (Eq.(62)) is obtained from Eq.(65), (87) and (88) in the form

31 i51KT (acp) 6

5 p 
(89)

ee e 4 4F(c p, aq e)

At high pressures for which c > 1, we can easily terminate the series of the
P

function F(cp ,aq e)
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6 -e]1 2.
F(E ,ai) 8E3 exp(-c )[1 + -] + O(e /C2)p c > 1. (90)

p e p p -CCp P' P
6 -E

Letting (1 + 6 =aand FCe, ) 8a e (91)
p p

3T5 5MKTa 6
3

T e P46 , C > 1, for n>n and r'/z~l, (92)ee 8e L64e- p p
e

where a, cp, 6 are given by Eqs. (14), (43) and (10) respectively. For thee

quantum plasma, the ions are still classical, and a relaxation time resulting from the

electron-ion sound wave interaction can be derived from Eq.(43) with E - &o

(Fermi energy) since hw. << E for all densities under consideration. Thus
1

37r K. h3

2 mZe R (bqi)

For quantum plasmas bqi can be quite large, so that the series in Eq. (47) does not

converge for b4i>27. Hence in the present case where bqi 2w (bqi x),

B X 
2v

R (x) B1 - x<2T (94)

R (x) = 6'(5) - I e ( 22

4x =x 4+ + 12 + - -4 +  24 x>2
x v 1 V X 2 X V

(95)

where (5) k 5 is the Riemann Zeta-functio n--
2)

k-l

The effective relaxation time due to both electron-electron waveand electron-ion

wave interactions in a nonideal quantum plasma is

Tei Tee Tei

Teff Tee i +G(T) (96)

where the relaxation time ratio is

"ei
G(T) = - (97)

ee

For &o -P E - kT and ltw e <<kT, Eq. (92) and (93), averaged over a Maxwell distribution give

the classical electrical conductivity derived in Eq.(53). On the other hand, if we
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assumehw e >kT and complete degeneracy of the electrons, the electrical conductivity (50)e

of the quantum plasma with the relaxation time (96) is

= , (98)
2 m Ze2R ,(bqi)(l+G(T))

21 -3 24 -3 3 4
where for all cases of interest, i.e., 10 cm :5n! 10 cm and T10 -10 4.K,

G(T)<<l. But for higher densities and lower temperatures G(T) can make a significant

contribution. The electrical conductivity aQ is a linear function of the density

n but less sensitive to the temperature T. Eq.(98) agrees with the expression

25)
for electrical conductivity of a low temperature metal 2  . Further discussions

and applicaations follow in section V1.
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VI. APPLICATIONS

1. Classical nonideal plasmas.

In order to apply the formulas derived above, we propose a study of the electrical

conductivity as a function of the relevant parameters involved. For applications

of the theory to strongly, intermediate and weakly nonideal plasmas, it should be

noted that the dimensionless y/Z, ep = TfWp /KT, aq e' bqi and n/n occuring in

Eqs. (53) and (54) for the electrical conductivity of classical nonideal plasmas can not be

varied independently. Since y/z increase with increasing n and decreaswe with increasing T,

C varies over a large n-T region and hence, so does e , similar to y/Z. Numerically,p e

-3 1/3 -1 - 7 1/2 -l -16 -3/2y/z = 1.67 x 10 n T , c = 4.328 x 10 n T n/fi = 2.07 x 10 nT- , (99)P

where for y/Z > 1,

1/3 1/2 -1/2aqe = (4Tr/3) (T ) (Y/Z) /  
, (100)

s is given by Eq. (86).P

For -<l, aq >>l and hence from Eq.(40) e z aqe, i.e.,
z e e p e

11/6 (32Ke)1/2 (n/B) 1 3 (101)

and for 11, aqe<1, Eq.(40) reads,z e

= /6(y/Z)/23)2/3 -l 1/2(/ 1/3 (102)ee
In accordance with Eqs. (102) and (103), it is clearly seen that Re(s p, aq) 1

for all >1, as long as n<<n.

So far the parameters studied are related to the electron-electron interaction.

For the electron-ion contribution only one characteristic parameter bqi occurs

in R.(bqi) of Eq. (45). For this case of relatively low density plasma, n< and y/Zsl,

6. given by Eq. (8); the expression of b4i (4i = 21/6i) as a function of the relevant
11 1

dimensionless parameters is

b = (2)3/2 (8/3Z)1/3 Ki1/2 (m/M)1/2 [-1/2 -1 1/3 (103)
bq1  (i) (r/Z i m/) [ + Z (y/Z) ] (n/ii)

Z = (4Tr/3Z) 1/3 [4w(l+Z)]-1/2 (104)

and numerically,
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bqi = 4.129 x 10 (m/M)/2Z- I3 [l+Z (y/Z)-1/2 (n i 13 (105)

Hence b4i<<l for n<ft and Rz(bq)=l according to Eq. (45). In view of this order

of magnitude of Re(c , a4e) and R(bqi) as n/d-.O,the electrical conductivity ofthe

classical nonideal plasma[Eq. (53 )]is a very weakly varying function of the shielding

parameters 6 (s=e,i) defined in Eqs. (8), (10), and (11). The weak dependence isS "

attributed to the many-body interaction character of the present theory, since the

electron is interacting with the plasma as a whole rather than with individual

particles.

The electrical, conductivity formula presently derived for classical nonideal

plasmas is only weakly dependent on the density of the electrons n, and goes as

3/2
T3 . Hence, in this respect it does not only agree with the usual kinetic

theory results '(ideal plasmas) as n gets very small compared to n or y/Z<<l,

but also with the recent theories for nonideal plasmas as well1 -2,l7- )

The nonideal effects of the plasma on the electrical conductivity are then

governed by the Coulomb interaction alone through the nondimensional Coulomb

conductivity c*(y/Z) which we define by

* (KT) 3 /2

cc = a * (y/Z) (106)
c =c 1/2e2

and with Eq. (53) it is shown that,

a * (y/Z) KeK/Tfr 3/2 (107)c =L(y/Z, n/ii)

L(y/z,n/fi) is defined in Appendix D as

L(y/z,n/n) = K iRe (y/z,n/f)+ZKeR i(y/Z, n/ft) (108)

where for n<n

R e(y/Z, n/s) = 1 + 1 (n/n)3 + a (Y/Z)- 12 /2

+ a1 (y/Z) + .... (109)

and

R.(y/Z, n/fi) = 1 - b TI+Z (Y/Z) + b [1+ (Y/Z)-/ 2 ] 2 (n/). .,0 o 1 o (110)

The constants Vl, bo etc., are given in Appendix D. Comparison with the existing
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results such as ideall Dlasma I-II)o*(y/Z) would be o (y/Z) [3(2/T) 1/2/4] en[,Xo(y/Z) - 3 / 2 ]

1/2
with a = 3/Z(4ff(I+Z)) and is valid only for y/Z<<l. Similar nondimensional

Conlomb conductivities can be expressed from the formulas which are of special

applicability to only weakly and intermediate nonideal classical Plasmas, i.e.,

Y<1. From the first case (Ebeling et al )), a*(y/Z) can be shown to be:
z

* l-i2a ) (/)3/2]-/

OE(Y/Z) = [-(l/2Z)(Y/Z) 3 /f[ia (y/Z) -3/2, (111)

where f : 1.73. And from the second case (Wilhelm ), ,c (y/Z) is:

-3/ (870) 12Z 6. (.47Tn. 1/3 { , +() 1 /3 ~4~lZ]-1/2 -yZ)1/2}
a C (- / Z) an[ 1)8KT 2] ' i =  i + (--Z-) [47v (1+Z) ]i/(Y /Z)- /

f /m6.
(112)

where i=dD for Y/Z<1and S.=(4Tn/3Z I /3for Y/Z>>l- Table I compares these different

nondimensional Coulomb conductivities over a wide range of densities expressed as a ratio n/Al at

typical plasma temperature T = 10 4K with Z=l. At high densities both a and a show
s E

19 -3 20 -3a sudden jump at n>10 cm , and would give a negative value at nl02 cm and thereby

their applicability comes to an end at these and higher densities, a (y/Z) on thew

other hand, shows significant nonideal effects of the plasma, which can be attributed

to the argument of the logarithm which is n for y/Z>>l and behaves like the ideal

-1/2
Coulomb logarithm argument for y/Z<<l which is an-  This behavior is observed in

Fig. I where we draw aw(y/Z) as a function of y/Z along with the other Coulomb

conductivities. a E(y/Z) shows evidence of its limitation to only weakly nonideal

plasmas as it behaves (besides a very small difference in magnitude) identically with

a (-y/Z) of the ideal plasma. a ( y/Z) of the present theory, on the other hand,

shows much more evidence of the effects of the nonideality of the electrical

conductivity. It shows an important difference in magnitude for ->1 and yet converges
* * z

to as (y/Z) of the ideal plasma as y/Z-0. w (y/Z) does not show this later behavior as

y/Z-0 which is due to the quantum mechanical scattering involved. Curves similar

2 9,30)to 3 and 4 of Fig. I have been reported in experiments -
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Fig. 1. Dimensionless Coulomb Conductivity Versus Interaction
Parameter y/Z of Different Theories at T=10 4 *K.
1:ideal plasma, 2:[11 3:present theory, 4:[171.
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TABLE I: The Nondimensional Coulomb Conductivity o*(y/Z)

at T104 0K, Z-1.

n/ia* a* a* a*

c w E

present theory ideal [17] i]

8.40xlO- 7  0.109 0.130 0.045 0.129

8.40xlO-6  0.102 0.175 0.053 0.173

8.40xlO- 5  0.120 0.268 0.064 0.261

8.40x10- 4  0.139 0.571 .0.080 0.530

8.40x10 3  0.191 - 0.105

Fig. 2 shows the electrical conductivity of classical nonideal plasma presently

derived and given by Eq. (53), versus the variable interaction parameter y/Z and constant

density n. It is seen that the value of a is slashed byC

several order of magnitude as y/Z goes from -10- 3 to y/Zzl0, through variation

of the temperature T at a fixed density n. It should be noted however that a slower

increase is expected in the electrical conductivity a with increasing Y/Z byc

varying the density n at fixed T. This later behavior is due to the dependence of the

Coulomb conductivity a on y/Z and n/ft through L(y/Z,n/fi). Suchanincreasewouldnot
c

-1 1/3 3/2have existed if L(y/Z,n/?i) were a constant, since y/Z-T- n and a c*/(y/Z)3. A
c C

numerical illustration of this point and of the order of magnitude of a is shown in
c

Table II for a typical Temperature T = 10 4Kat different densities for a H-plasma. The relation
i11 - i -

between the cgs units and the practical units is 9 x 10 mho-cm - = 1 sec .

TABLE II: The Electrical Conductivity a at T =10 4K and Z-1.c
-3 -

n cm y/Z ac mho-cm -

1017 0.077 2 . 9 30xi0

1019 0.36 3.630xI01

1021 1.67 8.590 xi0
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104 H-plasma
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[mho-cm' 1] n= 102 0 cm-
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10-3 10-2 10,1 100 101
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Fig. 2. Electrical Conductivity [mho-cnf1]of Classical Nonideal
Plasma Versus the Interaction Parameter Y/Z for Constant
Density n.
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2. Comparison with Experiments

The alkali plasmas are being the more commonly used in the measurements,

due to their lower ionization potential and the material characteristics they

offer as wires, powders and vapors. Although, a bulk of experimental results

has been accumulated over the years on the electrical conductivit

the measurements reported are mostly those of weakly nonideal plasmas, i.e.

0 < y/Z < 1. Here we present in Fig. 3 the Coulomb conductivity given by Eq.(107)

corresponding to a classical, weakly nonideal Lithium plasma. For Lithium (first

ionization potential I = 5.39 ev) conductivity data are reported in Refs. 36,37.

By letting KT[+(l/Z)] f p/n, where p is the plasma pressure we have

3/4Ypn Zle (113)

and

n/h1 = aIp3/8 (Y/Z)15/8 , CL (V3/2X9m) 3 /2 e15/4 [l+(i/z) 3/8 (114)

Thus Eq.(107) becomes

a * (y/Zp) K K./(2r) 1/ 2  (115)
c (TrL(y/Z, p)

where

L(y/Z,p) = (5/3) f 2 +Vi1a1
/ 3 [I+a0 (Y/Z)- I /2(Y/Z) 9/8 p/8+a1 (Y/Z) I

+ Pa 1 2/3 [1+ao(/Z)-l 1 (Y/Z ) 13/ 8 p 1 / 4 _ ball/3 [l+Zo(y/)-1/ 2 -1

(Y/) 58 P1/8 +b1a12/3 R 0(y/Z) -1/2 1-2 (/ 5/4 p1/4+•y pl/p + b1 1 2¢ [l+Zo( /z-/2-(y/Z) /pl/ +.

(116)

with a defined in Eq (114), a0 , a1 etc... are given in Appendix D, and

< = K. = 5/3. In Fig. 3 a is shown for two different pressures 500 and 125
e I c

atmospheres at Z = 1. The theoretical curves are isobars in the low interaction

parameter range which agree with the experimental results for a Lithium plasma.

Along with ac , aw given by Eq. (112) is depicted and its agreement with the
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Fig. 3. Electircal Conductivity of Nonideal Plasma.
1) Spitzer's Formula; Experiment (361.: 2) 125, 3) 500 atm
Present Theory: 4) 125, 5) 500 atm
[17]: (6) 500, 7)l125atm
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experimental results is also good. One can observe, however, that aw shows a

slight increase of the Coulomb conductivity with increasing the pressure p over

the entire range 05y/Z<I. The pressure dependence of aw is given by:

Aw =(8m/45i2 ) (4Tr/3Z)- 2/3 (Z+e)2 / 4  5/4 Y-5/4 [+y / 17

1/4 -51/4

2 / -231/s-) 2 5 y-/

ZI/4 )4i/3)(Ze2) p-l4[+cY-/2 2 (117)

with c = (4n/3Z)l /3 [Z/47r(l+Z) ]1/2 and hence

a* = 2/T)i1/2/o = (3/42) ( ) 1 / (118)

ww

It should be noted that while ac, aw and the experimental results of Fig. 3

are in a close agreement in the range 0.3 i y/Z ! 0.5, the Coulomb conductivity

,

a of the ideal plasma is clearly inadequate over the entire range of the non-

ideal regime.
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3. Nonideal Quantum Plasmas

As it was shown in section V, in connection with the relaxation time ratio G(T)

given by Eq.(97), the electron-electron wave interaction contributes little to alter

the relaxation time of the electron in high density plasmas in the range n-10 20

24 -3-10 cm ,i.e., G(T)<<l. The electrical conductivity is mainly due to electron-ion

waves interaction. In order to apoly the conductivity formula (98) to non.ideal quantum

plasmas, we express the dimensionless formula aQ/ was a function of the relevant para-

meters, the quantum interaction parameter l/Z, n/n etc... From Eq.(98) we

observe that the traditional logarithmic term associated with the ideal and weakly

nonideal classical plasmas is represented in our formula by Q = R.(bqi)(l+G(T)).

Since G(T)<<l in the range of densitiea of interest, Eqs. (04) and (95) permit

to express Q in the form

Q(n/n) = l-Co(n/n)I/3 + C (n/n)2/3 + ..., b4i<27, (119)

and

Q(n/n)Z B (n/n)-4/3-4exp[-A (n/) /3][Al+A(n/f) /3+A3(n/t) 2/3+
+A4 (n/ft)+A 5 (n/?i) 4 /3] +  bqi>27' (120)

where the constants Ao , A1 , B etc . . . are defined in Appendix D.

00

In dimensionless form,Eq. (98) becomes,

aQ/1p = Q (n/n)(dF/ e)(n/n) (r/z) -  (121)

where

* =1/3 5/6
a (n/n) 3 (Ki./Z)(3/27T) /Q(n/i) (122)

)e is given by Eq. (41) dF is the Thomds-Fermi screening length,

dF=[(h24me2)(ir/3 ) 1/3 1/2 given numerically with n/A in Eq. (99), and
d/6 //2 8 -1/3

dF/e = 12.30 n- I 6 TI /2 , r/Z = 1.884xi08 n (123)

By Eq. (115), a Q/Wp decreases with increasing-interaction parameter F/Z.

Since r/Z is independent of the temperature T and decreases with-increasing n like

r/Z-n -  
, the nonideal quantum plasma (n>n) becomes more ideal with increasing

density n in contrast to the classical nonideal plasma (n<i), which behaves
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1/3
more "nonideal" as n increases since y/Z - n Consequently, the electrical

conductivity of nonideal plasmas(n h) has a minimum as a function of the pressure

(or density n) at some pressure p (or density fi). Along these lines, similar

conclusions have been reported in experiments on the electrical conductivity of

3,30)alkali plasmas 3 - . This behavior should not be attributed only to the exponential

electron density increase (with increasing pressure) due to (nonideal) ionization

potential lowering, but also to the quantum effects (n>h) resulting from electron

shell overlapping, electron tunneling, and electron transport in an ordered

liquid-like ionized medium. All these effects contribute to the minimum observed

in electrical conductivity data. The behavior of the electrical conductivity

derived for nonideal quantum plasmas in Eq.(98), is shown in Fig. 4, which gives

aQ versus the interaction parameter r/Z. A numerical illustration of the order

of magnitude of OQ[Eq. (98)] is shown in Table III for a typical temperature T10 4°K

at several densities of the degenerate electrons of a hydrogen plasma.

TABLE III. Electrical Conductivity of Quantum

Hydrogen Plasma at T=10 °K(Z=I).

n[cm- 3 1022 1023 1024

OQ [mho-cm- 1 7.240xi01 7.870xi02- 9.480xi03
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Fig. 4. Electrical Conductivity [mho-cm-1 of Quantum Nonideal
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APPENDIX

A. TRANSFORMATIONS.

The integration over k' in equation (32) is transformed to an integration

over E' by the following change of variables

El =- 2 , k' 2dk' = - m12 /-' dE' [All
2m K 3

The square bracket of Eq.(32), defining 4 , transforms to

k' C(E')I- x [A.21
= k C(E)

X

where k' and k are related to t' and i. In accordance with the scattering diagram
x x

we have

q

X E

k
cos a = - , k= k' cos 8k, x , cos 0 = cos a cos 0 + sin a cos( x- €), [A31

kxx

With this change of variables, the integrals in Eq. (32) are over the energy E', the

angle 0 and the azimulthal angle *, where the latter integration over 4 cancels the

term containing coS(cx- 4), since for each interaction we have a constant q

Hence,

d 3k' = 27rsin6 d6 v7m / ' dE' (A3 /2

Considering the triangle (k, k ', q) in the above diagram indicates that

q= k'2 + k2 - 2kk'cos6 , [AS]

where 2

S(1- cose) q- , sind de q[6
2k2  k2 [A61
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B. INTEGRAL Ie

The integral in Eq.(35) is of the form

qe

I 7T 4 5 [B1]

0  (i + a2q2  EXP i 2q2) ] - I]

KT

Let KW ( + a q 2 and =p then I becomes
KT P KT e

(C p) de
I e p ) p [B2]
e r (a e -l

p

Eq.[B2] contains integrals of Debye32 ) type which are given by
D be- n yp x ar given b

e - I n 2 2ni-l1 + (2v + n)(2v)! ' [B3]

0V=

with n = 4, n=2, and n=O. For n=O Eq. [B3] has a logarithmic solution and
2^2

for n << i we have c << 1, C << 1, a qe >1. Thus, I becomes
p e e e

4
e 2 Re(c p , aqe ) [B4]

a p

where
^2V 2v

R (e p , aje) =1- + 4 )4 1 i - + 4 Be ( va (2v + 5)2v
4 e 2 2v

(aq)2 [ +2 v~l ( +2v]+

2v p 4 e l(ae) -n + C 2 (B51 p

(a e l 3 2v=l (2v + 2)(2v)! (a 4 e) + p e

It is seen that R (c , aq e ) 1 for e< 1, i.e. for n<n.
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C. Expansion of C(E)

Introducing an integral operator L representing the integrals over

Eq.C(5) can be formally written as

af
L(v C(E)) = - v [ cl

xx E

where the function C(E) is to be expanded in a power series of (E - ). Define

V C(E) = vI (E-ox x P P [C21
14

In order to determine the coefficients of the series C , we use the Kohler

variational principle-3 ), which makes use of the expression

3-
LW) = ffW(L)d k [C31

and
aff af 3.+0 jjJv o~[C

( v; ' -v -3E ) = - x d d k  CC4

where the integrationsare carried over a constant energy surface of the electron

before the interaction.The operator L is defined by Eq. (55) with the integration

over k', and P is the series [C2]. Furthermore,

(W, LW) = I CV C V D [C51
P'V

and
af0

CW , - v - ) = C N [C61

with

D - ( (4 v(E - C)" W('',')[v (E-)V- V(E'- V)V]. d3 k d 3 k ,  [C7]
11V (21T) 3KTJ)fx x x

and

N P v--'f- (E - 3dk , [C81
x - E

22)
We seek the maximum of (' , L*) with the supplementary conditiorr-,

3f

(W, LW) - ( v, -V-- ) , [C91

or

CCD Vv ICN , [ClO]
1J,V V
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by Eqs. [C5] and [C6]. For this purpose we add the constraint [C91 to Eq.[C6]

multiplied by a Lagrangian parameter X and obtain the maximum from the condition

0 = d__ I C C D + X I C N 21 C D + XN [CII]
dC vp V 1 I P P v P

Multiplication by C and a summation over p yields by comparison with Eq. [CIO]

= -2. Hence, Eq.[ClI] reduces to the system of equations

I CVD V = NP [C121

V N

which determine C . In particular C = -
vo D

00
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D. Evaluation of L(y/Z, n/)

In accordance with Eq.(5 4 ) L(y/Z,n/n) = K R f- ZK R. where R and R. are
i e e ~ e

given by Eqs. [B51 and (47) respectively. By Eqs. (100) - (103), R (y/Z,n/n)e

becomes for n<A:

R(y/Z,n/fi)=l +v I(n/fi) 1/3 [1+a o0 ( y/ Z ) - l] 11 / 2 ( Y / Z ) 1 / 2

* I al1+P 2 (n / fi) 2 / [ 1+ a o0 (y / Z ) -l 1( (7/z)l1/3 -1 1/ /2 1/
* 1(nlfl) /3 + ao(n/fi) [1+a (y/Z) 3 /e 0

+ 2+P(n/) [1+ao(Y/Z)- I I (n/)2/3[1+a(Y/Z)
- I ] (y/Z)2+...

[DlI

where

2/3 1/3 5/3 1/3,
a = (47/3) 2/Ke, ai=-( 3 6) r Ke, a2 -4 (187r)i/Ke [D2]

l 
= -47r(32) 1/6/5e5 19 

2e

28/3 2 /9

2 4F2 / (3 2 )1/3 [D3]

4=- I4 /90

In accordance with Eqs. (47) and (104) R.(y/Z, n/fi) is given for n<h by:

Ri(y/Z,n/fi) = 1 - b (n/) I13 [1+Z (y/Z)-2]- + b (nO
0 0=1

[l+Z (Y/z) - 1/2]- 2v [D4]

where

3/2 1/3 1/2 1/
b ° = (4/5)(2) (T/3Z) Ki (m/M)1/2 [D51

b = 4B 29(5b /2)2/3 /(2+ 2)2v! [D61

Based on the definition in section VI, Q(n/fi) = R.(1+G(T)) -' R.(n/fi) for

G(T)<<. In accordance with Eqs. (94), (95) and (8) i;ith y/Z>>, R.(n/f) is

given by:

R (n/f) = -C (n/fi)1/3+4 C (n/) 2v/3 bj.<2rrT [D7]

V=l
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where

C =(8/5) r(2K.) 1/2(3Z)-l/3(m/M)I /2  [D8)
O j

C =B2v (5C /2 jV/
3/(2v

+
2)2v! [D91

B 2v are Bernoulli numbers and v is an index of summation. Furthermore,

R.(n/h) = B (n/?i)-4/3- 4i exp[-vAvo(n/h) 1/3 ] A + A2(n/ft)/3

0 V1 v

+Av3(n/f)-2/3 -l , 4q 1+i , [D0]

where
B =96C(5)/(5C /2)4  

[DIlI

o o

A = 5C /2
v2 0

A 1 /v

Av2 =4(5C/2)-
1 /v2

Av3 = 12(5C /2)-2 /v3

3 4 [DI21

A = 24(5C /2)- / 4

v4 0

A 5 = 24(5C/2)-4/V
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V. ANOMALOUS DIFFUSION ACROSS MAGNETIC FIELDS IN PLASMAS

By

H. E. Wilhelm

Abstract

The anomalous diffusion transverse to a homogeneous magnetic

field B resulting from the interaction of the charged particles0

with the electric microfields in plasmas with an approximate local

thermal equilibrium is analyzed by means of statistical methods

based on the Langevin equation. The correlation functions of the

stochastic velocity and electric microfields are calculated in clo-

sed form, from which an anomalous transverse diffusion coefficient

D. = (kT/m)/(3/,/2)Ill and momentum relaxation time I - (/5lwl)-I

are derived for particles of charge e < 0, mass m, and gyration fre-

quency w - eB /m (kT - thermal energy). Comparison with the pheno-

Bmenological Bohm diffusion coefficient Di - kT/161e1B indicates that

anomalous diffusion in nonturbulent plasmas is considerably stronger

than in turbulent plasmas.
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INTRODUCTI ON

According to the kinetic theory (binary interactions) of plasmas- , the charged

particles (electrons or ions) should diffuse across an external magnetic field 1 with
0

a diffusion coefficient D, - (kT/m)T/(l + w 2T2 ), where T is their momentum relaxation

time and w = eB /m is their gyration frequency (kT - thermal energy, m - mass, e § 00

= charge of particles). The dependence D, a B- 2 on the induction has been observed

0

for w 2 T 2 >> 1, e.g., in weakly ionized plasmas in which the charged particles inter-

act mainly with the neutrals.- ) For plasmas with predominant Coulomb interactions,

the experiments frequently indicate an anomalous diffusin D, B 1 , e.g., for low

pressure arcs- ) , hollow cathode discharges of ion thrusters-) , magnetically contained

fusion plasmas5 ), magnetically insulated diodes69 and magnetically insulated ion

beams-. Bohm was the first to investigate anomalous diffusion across magnetic fields

in low pressure mercury arcs and derived from the experimental data the transverse

diffusion coef'icient
8 )

DB 
= kT/l6jejB

Following the original suggestion by Bohm that the anomalous diffusion is caused

by turbulent particle transport across the magnetic field lines, some not quite success-

ful attempts have been made at explaining "Bohm diffusion" within the frame of plasma

9,10)turbulence theory- -. Except for the dimensionless phenomenological coefficient

C - 1/16, the Bohm formula can be readily deduced by means of dimensional analysis.

More recent experiments indicate that 1/20 < C < 1/2, depending on the type of plasma

11, 12)
and the level of turbulence present-'

We consider herein nonturbulent plasmas in a homogeneous magnetic field, which

are fully ionized or contain neutrals only in small concentrations so that their

interactions with the charged particles are negligible. For the diffusion processes

the usual assumption is made that they perturb the Maxwell distributions of the

electrons and ions only slightly. Based on the Langevin equations3 I,14)for the

electrons and ions in a homogeneous 1 -field, the correlation function for their
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stochastic velocity fields and for the random electric microfields are calculated.

The thermal equilibrium fluctuations of the electric microfield are shown to pro-

duce random particle drifts across Io. which result in an anomalous diffusion coef-

ficient D, - B - . The anomalous diffusion coefficient is of the magnitude of the
- 0

maximum diffusion coefficient in a magnetic field, i.e. D, > D .

Bohm diffusion in turbulent plasmas can be treated in an analogeous manner.

The evaluation of the correlation functions of the macroscopic velocity and electric

field fluctuations in turbulent plasmas requires , however, different mathematical

methods.
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THEORETICAL FOUNDATIONS

The stochastic motion v(t) of a charged test particle (m,e) under the influence

of the random fluctuations E(t) of the electric microfield of a quasi-homogeneous plasma

is commonly described by the Fokker-Planck equation or the corresponding Langevin equa-

tion13 '14 ) . Within this theoretical approach, the diffusion coefficients perpendicular

(Di) and parallel (D,,) to an external homogeneous magnetic field B = (O,O,B ) are0 0

given in terms of the mean square particle displacements at time t by 3,14)

D, - <Ax 2 (t)>/2t, <Ax(t) 2 > = <Ay(t) 2 >; D, = <Az(t)2 >/2t. (1)

Eq. (1) contains the assumption that the plasma is isotropic in all planes perpendi-

D.Teprtcedspae4cular to Bo (Dx Dy = D, D,,). The particle displacements Ar(t) - ft(t)dt are de-

13,14)*
termined by the Langevin equation for the magnetoactive plasma- •

dv,(t)Mdt - e[ 1.(t) + ;()01o -i-v(t) ,(2)

=t) 14 1+ (3)
dv (t)Idt -Et - - v,(t)

m t11

In Eqs. (2) and (3), 1(t) is the stochastic longitudinal (nonrelativistic) microfield

produced collectively by the charged field particles (electrons and ions) of the thermal

equilibrium plasma at the position of the test particle (m,e), whereas t(t)xB0 is the
0

stochastic Lorentz field generated by the random motion v(t) of the test particle charge

across the field lines B . The averages of the stochastic fields for an ensemble of

test particles vanish,

<v-(t)> =  , <(t)> = (4)

The ensemble averages over the stochastic fields are time-independent, since they are

identical with the time averages over periods t >> T, T,,, in statictical equilibrium.

These averages are calculated by means of the velocity distribution of the test part-

icles, which is a Gauss or Maxwell distribution (Markoff process) for times t >> , ,.

87



Accordingly,

<v 2t)> - kT/m, i = xyz. (5)

The test particle experiences a friction force -m(V,(t)/T + v,1 (t)/T,,) as it moves

through the random impulses from the fluctuating microfield i(t), i.e., T - T{ ,1

and T,, = -,,{, d are integral functionals of 1(t). Since the transport mechanisms in

the directions perpendicular and parallel to 1 involve and are free from induction,o

respectively, T and T,, are necessarily different.

In accordance with the theory of the Langevin equation, the velocity v(t) of

the test particle changes significantly during a relaxation time T, but may vary only

by a fraction of the change Iv(t + T) - C(t)I during a single field impulse 1(t) ' - -

In rarefied plasmas this condition is satisfied if the plasma frequency wPWE is

large compared with the relaxation frequency (c° - dielectric permittivity of vacuum,

e = elementary charge, m - electron mass) 14 )

-l -i n2 1/p>> , , , W a (ne /E m )1/2 (6)

p o 0 0

For the Brownian motion of a macroscopic test particle (colloid) in a viscous

fluid, the relaxation time T is given by the Einstein-Stokes formula. For the sto-
-i

chastic motion of a microscopic particle, the relaxation frequency T has to be cal-

culated as a correlation integral of the microfield. The fascinating idea of the

interrelation between relaxation time and microfield has been first formulated by

Einstein in his investigation on the thermal equilibrium between atoms and Planck

15)
radiation )
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ANOMALOUS DIFFUSION

We consider a fully ionized plasma of n(l) electrons (e - -e0 , m - m 0) and

n(r)/Z ions (e = Ze , m = M) per unit volume in a homogeneous magnetic field B 0

(O,O,Bo). A weak density gradient Vn(r) is assumed to be present so that i) the

plasma can be considered to be statistically isotropic in planes perpendicular to
o

and ii) the associated diffusion currents perturb the local thermal equilibrium only

slightly. The Langevin equations (2) and (3) represent two coupled differential

equations for the transverse components v (t) and v (t) and one independent differ-

ential equation for the axial component v (t) of the velocity fluctuation of the test

particle, which have the formal solutions:

v (t) = (u coswt + v sinwt)et/T

t

+ (e/m)e- (t-s)/T[E x(s)cosw(t-s) + Ey (s)sinw(t-s)lds, (7)

0

v (t) - (v coswt - u sint)et/T

y 0 0

t

+ (e/m)ie- (t-s)/T[E y(s)cosw(t-s) - E x(s)sinw(t-s)]ds, (8)

0
t

vz (t) = Woe-t/P" + (e/m)mz (s)e-(t-s)/".s , (9)

where 0

< eB /m 0, e § 0 (10)

and (Uo,V, ) = (t-O) is the initial value of the stochastic field. Scalar multi-

plication of the solution vector v(t) with the initial vector v(t-0) and averaging

yields, after generalizing the resulting correlation functions for "initial" times t'

in the limit t >> T, TI,
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<v x(t)v x(t')> = <v y(t)v y(t')> = (kT/m)cos(t-t')e - i t - t ' l/, (11)

<v z(t)v z(t')> = (kT/m)elt-t' I/T,, 
(12)

since <u2> = <v2> = <w2 > = kT/m. The mean square displacements in the directions
0 0 0

perpendicular and parallel to 1 are proportional to t,0

t t<Ax(t)2>2-Aytt)l>+Sf vx), -13)

2>= 2 y(t)2 > <(t)v (t' )>dt dt' = 2kT Tt/2( + 2 2 (13)

00
t t

<Az(t)2> =fjvz(t)v z (t ' )>dt dt' = 2(KT/m)T,,t (14)

by Eqs. (11) and (12). Accordingly, the transverse and parallel diffusion coefficients

defined in Eq. (1) are

D, = (kT/m)i/(l + w2 T2 ) D1 = (kT/m)T,, (15)

D. and t, are known from the diffusion theory for plasmas without magnetic

fields 1 "

For the evaluation of the transverse relaxation time T in D,, the solution (7)

is squared and averaged,

<vx (t )2 = <( Uo°St + voSinwt) 2 >e-2t/T
t t

+ (e/m)2 e-2t/Sf(r+s)/T [<Ex (r)Ex (s)>cos(t-r)cosw(t-s)

+ <E y(r)Ey (s)>sinw(t-r)sinw(t-s)]dr ds, (16)

since "(o) and I(t) are statistically independent and <Ei(r)E(s)> - 0 for i J.

Eq.(16), becomes after integration over the coherence strip by means of the trans-

formation = r - s, n = (r + s)/2, in the limit t >> T:
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kT/m = - (e/m)2T f (C)costdC (17)

where -w

E() 4-(r-s) = <E x(r)E x(s)> = <E y(r)Ey (s)> (18)

in view of the isotropy in planes j 1 . Eq. (17) gives the relation between T and0

E±(t) through an integral over the microfield correlation function 0Q), which will

be shown to decrease exponentially with increasing jE4"
The correlation function for E,(t) can be expressed in terms of the correlation

functions for v,(t), since these stochastic vector functions are interrelated through

the Langevin equation. By Eq. (2),

+ (m/e)v,/T + (m/e)dv I/dt (19)

or

E, x 8 + (m/e)v 1 /t , t >> T, (20)
- - 0 -

as known from the general theory of the Langevin equation 7-) . Since the correct

<Ax 2 > and D, are obtained in the limit t >> T (d , /dt + -)17,), the correlation func-

tion of the microfield is directly calculated from Eq. (20) as

<E (t)E (t')> =  B2<Vy(t)vy t' )> + (m/eT) 2<v (t)V (t')>
x x y y X

-(mBo0/eT) [< < x (t)V y(t')> + <V y()v x (t' )>]. (21)

The method used for the determination of the xx and yy velocity correlations in

Eqs. (11) and (12) yields, by means of the solutions (7) and (8), for the asymmetric

velocity correlations

<V x(t)V y(t')> = +(kT/m)sinw(t-t')e -It- t ' /T, (22)

<V y(t)vx ( t' )> = -(kT/m)sin(t-t' )e - [ t - t ' I/T (23)

These weak correlations are caused by the rotation of the charges in the magnetic

field, and vanish for w = eB /m -0. Substitution of Eqs. (11) - (12) and (22) - (23)
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into Eq. (21) gives the desired correlation function for the microfield components

E (t) or E (t),
x y

<E (t)E (t')> = (1 + W2T2 )T) -2 (kT/m)B2 cosw(t-t ' )e - t-t'I/T (24)
x x 0

Combining of Eqs. (24), (17), and (18) results in an eigen-value equation for the

relaxation time,

1 22-1iTf

1 = (1 + w2 T 2)T e-II/T cos2 wd (25)

Since the integral is 2T(l+2w 2 2)/(l + 4w 2T 2), Eq. (25) has the solution

W2 T2 = 1/2; wIWt = i/V"- (26)

This remarkable result gives for the microfield driven diffusion of charged particles

(e,m) transverse to a magnetic field B [Eq. (15)] the transport coefficients:

D. = (kT/m)/[(3//2)lw] , T- 1 = /2 wI{ (27)

For electrons (e = -e , m = m ) and ions (e = Ze , m = M) at the temperature T, the

anomalous transverse diffusion and relaxation frequencies are:

De kT/(3/2 Te = vr e B /m (28)0-0 e 0 0 0

kT/(3//2)ZeoB -1  Ze B /M

0 0' i 0 0 (29)

This completes the theory of the anomalous, microfield driven diffusion of charged

particles across a homogeneous magnetic field in nonturbulent plasmas, which are in

an approximate local thermodynamic equilibrium.
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DISCUSSION

The anomalous diffusion of charged particles across magnetic fields is due to

the eigenvalue character of w- [Eq. (26)], which reflects the interrelation of elec-

tric and velocity field correlation [Eq. (24)]. The mathematical maximum of the

transverse diffusion coefficient is obtained from Eq. (15),

2 2 2 2)-1k/

dD,/dt= ( wI )(1 + ) kT/m= 0 , (30)

as

D, = kT/2mlwI , t-1  WI (31)

The actual diffusion coefficient in Eq. (27) is somewhat smaller, but nearly equal

to the mathematical maximum in Eq. (31), D. D_ since 3//2 2.121 >. 2. Thus, in

approximate thermal equilibrium, transverse diffusion is practically optimum.
Comparison of Eq. (27) with Bohm diffusion- ) indicates that D, -- 8D . Although

the phenomenological coefficient "8" is subject to experimental errors, it appears

safe to conclude that transverse diffusion in plasmas is considerably weaker in

presence of turbulence than in approximate thermal equilibrium.

The condition (6) for the applicability of the Langevin equation to electrons

(e) and ions (i) becomes

(e) P >> jeJ (i) p >> V2]W (32)

by Eq. (26). These inequalities provide upper limits for the magnetic field intensity,

(e) B << (mn/2c 0)/2 (i) B << (M/Z m)(mn/2 0)/2 (33)

. (32) or (33) corresponds for Z-1 to the (illustrative) condition that the r.m. .

induced field <(, )2 >1/2 of the random electron (s = a knd ioisnsmcoeld h ts o
is small compared with the r.m.s. electric microfield .fI



plasmas without magnetic fields,

(e) (2kT/m)I/2B << <>/2 (i) (2kT/M)B!2B <-2>/2(i) B < « E , (34)
0 0

18)
where- +2 -

<E,_> = 2(1 + Z-I)nkT/E 0 (35)0

These inequalities, which can probably be relaxed from small (<<) to smaller (<) in

applications, are in general realized in plasmas in which anomalous diffusion is

observed.

In experiments, the plasma is not always in an approximate local thermal equi-

librium. Since the characteristic times for thermal relaxation T - Ti - 0 between

electrons and ions and thermal anisotropy relaxation T. - Ti - 0 in the magnetic

field are large compared with the momentum relaxation time (T), transient plasmas

may be encountered with Te j T.. In this nonequilibrium situation the diffusion

formulas are still applicable if one sets T - Te in Eq. (28) and T - T_ in Eq. (29).

Plasmas with diffusion in weak density gradients are stable and remain so even

for larger density gradients due to the stabilizing effects of the homogeneous magn-

etic fiel 19) . In more complicated plasma systems, e.g., low pressure arcs with

19)current flow due to external electric fields, various convective instabilities-

19)
and electron-ion streaming instabilities-- may arise. Anomalous diffusion in un-

stable and turbulent plasmas will be treated in a seperate investigation.

94



REFERENCES

1. 1. P. Sharofsky, T. W. Johnston, M. P. Bachynski, The Particle Kinetics of

Plasmas (Addison-Wesley, Reading 1966).

2. V. E. Golant, Soy. Phys. - Uspekhi 6, 161 (1963).

3. F. C. Hoh, Rev. Mod. Phys., 34, 267 (1962).

4. H. R. Kaufman and R. S. Robinson, 14th International Electric Propulsion

Conference, Princeton 1979.

5. F. Winterberg, Phys. Rev. 174, 212 (1968).

6. F. Winterberg, Rev. Sci. Instr. 43, 814 (1972).

7. F. Winterberg, J. Plasma Phys. 21, 301 (1979).

8. D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields

(A. Guthrie and R. K. Wakerling, Eds., McGraw-Hill, New York 1949) pp. 12.

9. A. A. Vedenov and E. P. Velikhov, Dokl. Acad. Nauk 146, 65 (1962).

10. B. B. Kadomtsev and A. V. Nedospasov, Plasma Phys. Cl, 230 (1960).

11. H. F. Rugge and R. V. Pyle, Phys. Fluids 7, 754 (1964).

12. H. R. Kaufman, Private Communication, 1 May 1981.

13. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

14. R. Becker, Theory of Heat (Springer, New York 1976).

15. A. Einstein, Phys. Zs. 18, 121 (1917).

16. I. Fidone, Nuovo Cimento 20, 1219 (1961).

17. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-

Hill, New York 1965).

18. H. E. Wilhelm, to be published 1981.

19. A. A. Vedenov, Theory of Turbulent Plasma (U. S. Department of Commerce,

Springfield 1966).

95



VI. COLLECTIVE MICROFIELD DISTRIBUTION IN THERMAL PLASMAS

By

H. E. Wilhelm

ABSTRACT

The temperature did density dependent probability

_+ 4+
distribution W = W(E;T,n) of the collective microfield E

in fully ionized, ideal plasmas is calculated from first

principles of statistical mechanics. For typical ideal

plasmas, the average microfield EW = [12n(l + Z- )nKT]1
/2

is by one to two orders of magnitude larger than the char-

acteristic field (nearest neighbor approximation) EH

of the Holtsmark microfield distribution P = P(9;n). The

Holtsmark theory and its later extensions are shown to be

approximately valid for strongly nonideal plasmas only.

The interrelations between (average) kinetic, interaction,

collective microfield, and electric self energies is dis-

cussed. In particular, an equipartition <E /8n> - 3(l+Z - ) x

nKT/2 among (average)microfield and kinetic particle energies

in statistical equilibrium is derived by means of a thermo-

dynamic model of plasma formation.

96

...............



INTRODUCTION

The probability distribution of the stochastic electric fields E produced

by the electrons and ions in random thermal motion, is of basic interest for plasma

physics and for applications such as the evaluation of the transport properties, the

Stark broadening of spectral lines, and the preionization of atoms. Holtsmark cal-

culated the probability P(E)dE for the dimensionless electric microfield to be found

with a magnitude between E and E + dE for a system of n/Z point charges Ze per unit

volume with the result i)

P(E) = (2/7)E-lfx sinx e-(X/E)3/2dx
0

where

E - IEI/IEH , EH = 2(4/15)2/3Z1/3en2/3

This integral functional of E shows the asymptotic behavior P(E) = (3/2)E -5 /2 for

E + so that already the second order moment (average field energy density) does

not exist, <E >  P(E)E = Consecutively, Gans 2)believed to have derived
0

the correct distribution in form of an integral functional P(E) with converging

moments by considering non zero raddii r0 < (4wn/3Z) /of the charged particles,

which make zero distance approaches and infinite fields impossible. Both the Holts-

mark and Gans distributions are independent of the temperature of the field particles,

and describe essentially the fields of the nearest neighbor particles at an average

-1/3 -2distance r - (4lnn/3Z) since EH e/r . These theories are, therefore, approxim-

ately valid for strongly nonideal plasmas, in which the thermal energy KT is negli-

gible compared with the average Coulomb interaction energy Ze2 /r (electron-ion inter-

actions). This conclusion has been confirmed experimentally by Vidal ) , who showed

that observed Stark broadening by "cold" microwave discharge plasmas (Ze2n1/3 : KT)

is in good agreement with the Holtsmark or Gans disuAbutions.
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The later developments of microfield theory have been concerned with correcting

and extending the Holtsmark theory under consideration of thermal effects and particle

correlations. The formulation of a rigorous theory of the microfield in thermal

plasmas of arbitrary nonideality is aquivalent to the solution of the general many-

particle Coulomb interaction problem, and has not been achieved yet. However, sig-

nificant contributions to this problem were made with the help of collective coordi-

nate and discrete particle methods by distinguished researchers, e.g., Broyles' ,

6,7) 8,9) 10,1
Baranger and Mozer-- , Hettner and Wagner-- , and Hunger and Larenz-

Most laboratory plasmas, e.g., glow discharges, arc discharges at not more

than atmospheric pressure, and thermonuclear fusion discharges, are ideal systems

in which the Coulomb interaction energy is small compared to the thermal energy.

An interesting counter example for a nonideal plasma is the ball lightning phenome-

non, which consists of a highly ionized air plasma (n , 10 cm - 3) of low tempera-

ture (T % 103 °K). In ball lightning, the plasma appears to be in a highly viscous,

quasi-liquid state due to the balance of thermal and (negative) Coulomb interaction

energies, Ze2n1 /3 n KT, the spherical shape and long life-time (At . I sec) being

12)Inheoloigwaecoerd
explainable by minimum energy considerations.- In the following, we are concerned

only with ideal plasmas, for which we derive the probability distribution of the

collective electric microfields from first principles, i.e. the results are limited

to interaction parameters

y = Ze2n1/3/KT = 1.670x10-3Zn1/3T-1<< 1.

By the fundamental axiom of statistical mechanics of ideal systems in thermal

equilibrium, all equilibrium distributions can be derived without consideration of

13)
the interactions which bring about the equilibrium.- By extending this principle

for many-particle systems with discrete energies to continuous media with random
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energy densities u E(r) /8w , we derive the probability distribution of the

collective microfields E(rt) in ideal plasmas without approximations. Previously,

14)
we have generalized the methods of statistical mechanics for hydrodynamic-- and pla-

15)
sma--) turbulence based on the generalized entropy principle for nonequilibrium systems.
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PROBABILITY DISTRIBUTION

Subject of the considerations is a homogeneous, fully ionized ideal plasma of

volume Q containing ne = n electrons and ni = n/Z ions per unit volume. In thermal

equilibrium, the kinetic energy densities of the electron and ion components are

given by (ms = particle mass)
13 )

N

< M -n KT, Ns =n Q, s -e,i. (1)s 2 3

During the random thermal motions of the charged particles, a continuous transform-

ation of kinetic particle energy into potential electric energy occurs, and vice versa,

due to the particle interactions through their longitudinal Coulomb fields (transverse
2

electromagnetic interactions are negligible for m c << KT). By means of a thermo-

dynamic model for the formation of a fully ionized plasma, we demonstrate that an

equipartition of average random electric and kinetic energies exists in statistical

equilibrium [Eq. (42)],

< 2/8 > =(l + Z- )nKT . (2)
2

The electric field (r,t) produced collectively by the electrons and ions at

any point 'e S1 of the plasma and the field energy density u = ( ,t)2 /8n fluctuate

with time t about the average values < i > = and < e2 /8w> J 0, respectively. The

proposed problem is to derive the probability W( )d31 for finding the collective field

fluctuation in the volume element d E dE dE dE about the point = (E K E)
x y z x y z

of the field space subject to the thermal equilibrium conditions (1) and (2).

In order to determine experimentally the collective microfield distribution

W(E) = W(E /8r) in a homogeneous and isotropic plasma, one would haye to measure the

4. 2 34.fluctuating field E or the fluctuating energy density 92/8w in the vicinity A r of a

fixed field point rEQ at consecutive times t. yes V - 1,2,3'.. N within experi-

mental errors &t V , e where 8 is a time interval which is large compared
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with the correlation time of the stochastic field so that <( ,t) 1('r,t + e )> - o

(within these limitations, the magnitude of 0 may be changed from one measurementV

v to the next v +1). In a large number of such measurements, N -) - , the energy

density /8w would be observed N1 times, ... ,the energy density 1/8w would be

observed N times, etc., where 12/8w means an experimental value measured with anua

error A(12/8 ). The resulting step-shaped energy distribution N - N(1/8w) is
a aa

represented by the partition

N 1  N2  N 3  . N .. , NM
1 2 3 aL M

~2, 12~/81r 12, ... 2. 3
1 /n 2 3 /8r/7 .. ! T7 3

where

NI + N2 + N3 + ... N +... NM a N (4)

N 2  1 + N 2 /87 + N /87 + ...N V/8w + ... N NE18> 5112 2 3 a a .(5

N is the total number of measurements (N a) and N < t2/87 > is the total field en-

ergy density measured in the N independent observations. The entire energy density

N < f2/87 > can be distributed in a large number H of ways over sets {N a} of numbers

N • By elementary combinatorics,
1 3)

N! / N I N2 ! N3 ! ... Na! ... N! . (6)

The energy distribution N (t2/81) observed in statistical equilibrium is the most

probable one. Thus, N ( 2 /8w)is determined by the condition for a maximum of i) the
a a

number R of realizations or ii) the entropy S nu inil , subject to the constraints

(4) and (5).
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Accordingly, we determine the probability distribution N (E /8 7) from the

maximum of the function inl E f(N )

lnEI = N(InN - 1) - I N (lnN - 1) (7)
a=i

with
M

N = N N , (8)
a= 1

M 3 -1

I N aE /81 T + Z )nKT N-~ (9)
a=1

as constraints. Eq. (8) holds by definition of N, whereas Eq. (9) holds for a

large number N of measurements and the average energy density c12/87r of Eq. (2).

Addition of the constraints (8) and (9) multiplied by the Lagrangian multipliers

- X and -Pto Eq. (7) leads to the compact maximum conditions for lnIu,

aF(N )/N = 0, a2F(N )i3N 2 < 0, a = 1,2,.. .M, (10)a CK a a

where
M M M

F(N ) N(lnN - 1) - N (lnN - 1) -X 7 N -I N1 2 /8u (11)
a a1 a a a=la a-iaa

The solution of Eq. (10) gives the distribution N of the "discrete" energy densities

12 /8= in the form

N = Ae - a A - e. (12)

Henceforth, the subscript a is dropped since can be any point I in the field

space. The dimensional constants A(X) and v are then given by the normalization

conditions (8) and (9),

Afe-" E/84rE 2dE N (13)

0
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2f(E 2/8 n e~I84r2d= (~l14
2f84Ed E  A )n KT

( (g/8F) e - g  =r (12 I)nK (14)

0
as

A = (8n2 (l+Z- I)nKT]-3/2N, p -/I + Z- I)nKT (15)

For this normalization, which still contains the number N of measurements, the

probability distribution (12) for the microfield energy density is

(28 =N _21/87r(l + Z- )nKT
WN(E /8wr) 2 -1 e

T8 (I + Z )nKT]3/2

In theoretical applications, one is interested in the probability dP - W(I)d31

for finding a microfield E in the volume element d E about the point I of the field

space, with the normalization fdP = 1. The corresponding distribution function W()

of the collective microfield I is obtained by renormalization (N-* 1):

W(8) = [8f2(1 + z-l )nKT-3/2 e- 2/8r(l+Z-I)nKT (17)

This fundamental distribution has the form of a Gaussian, i.e. all its moments ex-

ist, e.g.,

<E fff E0 W(I)dE = 1 , (18)

<E fff "(W(dE)d 3  , (19)

< >  Eff E2W(E)d E = 12w(l+Z )nKT (20)

The most probable (EM) and the r.m.s. (EW) collective microfields are by Eqs. (17)

and (20)
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EM = [87(1 + Z )nKT]1/2 (21)

= [12r(l + Z -1)nKT] 1/2 
(22)

For considerations concerning the fluctuation of the collective microfield

(t) at a point re 2 with time t, temporal averages can be defined by

jfj lim i1E(t)idt (23)

-= lim _ El(t) 2 dt (24)

T- 2 T

The fluctuation of 1(t) is defined by AW(t) = (t) - (t) with (t) = . In stat-

ionary equilibrium, the time averages are identical with the ensemble averages.

By Eq. (17), the mean square (temporal) fluctuation of t(t) is

2 -2 8 -1
AE - (3 - )4 r(l + Z )nKT (25)

IT

TABLE I compares the r.m.s. field EW and the r.m.s. fluctuation (AE2)I /2 of

the collective microfield with the nearest neighbor Holtsmark field E = 2*(4/15) 2/3x
H

1/3 2/3
eZ n in dependence of the electron density n for typical ideal plasma condi-

tions (y << 1, T = 10 4K, Z =1 ). It is seen that E and (AE2)/2 are one to two

18i c-3
orders of magnitude larger than EH in the range of ideal plasma densities n < 10 cm

For these reasons, the Holtsmark field EH represents a small contribution to the

microfield in ideal plasmas. The result EW >> EH is readily understandable since

for ideal plasmas

22 + 2 Ze2n1/3
/ /3)(4/15) 4 3 Z2 3 (l + Z) KT < << 1 (26)
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The probability for observing a collective microfield with intensity

E = IEJ in the range between E and E + dE is P(E)dE - W(E)4wE dE, where W()

is given by Eq. (17). The maximum of the probability density P(E) is P(M) -

4e-I[82 (1 + Z- )nKT]I/ 2 by Eq. (21). Accordingly, the normalized probability

density is P(E)/P(EM) = (e/4)[82 ( + Z- )nKT]-l exp[-E2 /81r(l + Z- )nKT] i.
Fig. I presents P(E)/P(EM) versus 0 < E -< 108[Vcm - I ] with nT -1 1022

[cm-3 K] as a parameter. This distribution is a displaced Gaussian with a

maximum P(E)/P(EM) = 1 for E = Em, which shifts to higher abscissas l = [8w x

(i + Z- )nKTJI /2 with increasing nT-values (pressures). The scattering width

of the distributions AE " 28T(i + Z-1)nKT]I /2 increases -(nT)1 /2 with increas-
2

ing nT-values (note logarithmic scale of abscissa). The increasing quantitat-

ive importance of the collective microfield in ideal plasmas with higher

pressures p = (1 + Z )nKT is obvious.
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ENERGY RELATIONS

A fully ionized plasma consisting of electrons and Z times ionized ions in

thermal equilibrium at a temperature T exhibits various macroscopic energies. the

average kinetic energy <K> = 2-(l + Z-I)nKTQ, the average electric field energy22

<U> . <E /8w> Q, the average interaction energy <0> and selfenergy <W> of the

electrons and ions. In order to derive the interrelation between these energies,

the formation of the plasma by an electric charging process is considered. For

this purpose, we assume that the electrons and ions are initially dispersed at

infinity where they have only selfenergies. The plasma is then built up by mo-

ving one charge after the other from infinity into the volume 0, which requires

work against the resulting Coulomb field of the charges already present in fa.

The thermodynamics of the charging process is illustrated by i) a reversible

isothermal and ii) an adiabatic or isotropic model.

The electric charging work expanded in moving N electrons of charge e e -ee

and N/Z ions of charge Ze against their collective Coulomb fielf from infinity

into the (finite) volume Q is (* designates exclusion of terms with p v)

N, N* 2,le e-ri I N/Z N/Z 2 44 -1A I e- * * (Ze)Z ir- r F
U-1 v-l ' v=l p= 1

N N/Z 2-*.e +--1 (27)

I I ~Ze If r1Fp=ilv=l V

where r (re) are the position vectors of the p-th (v-th) electron (e) and ion

(i) in the volume n, respectively. The collective microfield of the N electrons

and N/Z ions at a field point (1,t) is the superposition

N N/Z

P= v=l V
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where i (r,t) and '(r,t) are the individial Coulomb fields produced at the field

point (r,t) by the V-th electron and the v-th ion, respectively. By Eq. (28), the

electric field energy of the plasma SI is

U Tfff --t)dr = D + ' (29)

where
e, N 

iN/Z N/Z,S+ id3
p--ivl 2 ~ u VxvlR "

1 N N/Z
+4- V ff " id 3 -' (30)

H=I v~l ~

N N/Z

1=Y fff(ge) 2  1 WL 2 3-)-
87 Pdr-+'_I d r 01(31)

are the (e-e, i-i, and e-i) interaction energy and the (e and i) selfenergy of

the plasma, respectively. Comparison of Eq. (27) with Eq. (29) reveals the inter-

relation

U- =f A. (32)

Thus, we see that the field energy U is the sum of the interaction energy 0 and

the selfenergy ' [Eq. (29)). The charging work A leads to an increase of the in-

teraction part $ of the field energy U [Eq. (32)]. The selfenergy T of the charges

is independent of the spatial locations of the charges, i.e. T is the same before

and after the charging process.

Another independent energy relation is obtained by multiplication of the

2-*s 2coupled Newtonian equations for the accelerations d r (t)/dt of the V-th elec-
11 ,V

tron (s - e) and the v-th ion (s = i) by their respective velocities v () -

dr (t)/dt and subsequent summation over all particles V and v. The resulting
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expression can be brought into the form d(K + 0)/dt - 0, which demonstrates that

the sum of kinetic (K) and interaction ($) energies is an invariant Ho,

K+ t (33)

where
N /

1 - 2 Ne> i 2K I - (v) + m (V (34)
= e v 

2  i V

and D=A is defined in Eq.(2 7). Eq. (33) expresses the conservation of kinetic K

and interaction $ energies in a plasma, in which the electrons and ions interact

by longitudinal Coulomb fields.

The thermodynamic functions of the plasma depend in general on the volume 9,

the number N of particles in Q, and the particle averages of the random kinetics

1 +2 +2
energies 2 m v and the random field energy densities E /8w. Accordingly, we2ss

th .th,
assume U U (T,,N s) for the thermal energy and S = S(T,e,N s) for the entropy,

where

1 +2 -+2
3KT/2 <- m v > (35)2 sS

For plasma formation by isothermal reversible charging, the volume a is

embedded into a heat bath of temperature T. The transfer of dN charges e from
S 5

infinity into the cavity 9 requires on the average the charging work dA =
5

d <U - T> = d <U> by Eq. (32), and their thermalization at a temperature T con-S S

sumes on the average the energy dU = 3 KTdN (s - e,i). The difference of these
s 2 s

energies, dQs, is supplied by the heat bath. Summation over "s" yields, in acc-

ordancc with the first law of thermodynamics

dQ- dUth - d<U> (36)
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since no other than electric charging work is performed on the system (dM - 0).

The associated entropy dS - dQ/T is a complete differential,

= ia h(ia th 1 (t

dS = 1 (u - <U>)dT + (U - <U>)dc + 1 _I - <U>)dN s . (37)
s-e,i s

Application of the condition e TS = a T3 S to Eq. (37) yields the partial differ-

ential for constant N and T,s

auth/3c = a<u>/ae (38)

thSince U = 0 for c = 0 (no thermal energy in 9 before charging), the integral

of Eq. (38) is

U th C (39)

Eq. (39) could have been derived by other thermodynamic plasma formation

processes, e.g. by adiabatic charging of the cavity Q. In this case dQ - 0,

and by Eq. (36)

dQ = dUt h - d<U> 0: <U> = Uth (40)

Finally, <U> can also by determined as that equilibrium value which maximizes the

entropy,

dS - T- [dU th - d<U> - 0: <U> - Uth (41)

Eqs.(39)-(41) indicate that an equipartition between thermal energy and

average microfield energy exists in statistical equilibrium. This fundamental

result is explicitly

3(1 + Z- I)NKT 0<12 /87> (42)
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The virial equation for the fully ionized plasmaI- ) , the averages of the

field energy equation (29), the energy conservation equation (33), and the ener-

gy balance equation (42) represent four independent equations for the average

kinetic energy <K>, the average field energy <U>, the average interaction ener-

gy <>, and the energy invariant H 0
0

x> + i<.> = 3 p (43)

2 2

<U>- <0> = , (44)

<K> + <> = H , (45)
0

<U> = <K> (46)

The pressure p of the plasma is assumed to be known (measurable). The self

energy T = <'> is independent of the random motion and spatial distribution of

the particles in the case of ideal plasmas, and can be calculated from the charge

distribution in the electrons and ions.

As an illustration, the plasma energies are calculated by means of Eqs.

(43) - (46) for the case that p and T are known: <U> =<X> = pO + T/3 > 0, <>

= pS - 2T/3< 0, H = 2pi - T/3 > 0. By definition, ideal plasmas are systems0

with weak Coulomb interactions, which preserve their electrical neutrality and

collective behavior. In applications of Eqs. (43) - (46) to ideal plasmas, it

should be kept in mind that the interaction energy <> is always small but never-

theless nonvanishing,

0 < Y 1<0>1<K> << 1. (47)
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CONCLUSION

In ideal plasmas, the distribution of the collective microfields is strongly

temperature and density dependent. For typical temperatures and densities of ideal

plasmas, the r.m.s. collective microfield is by orders of magnitude larger than the

characteristic Holtsmark field. The temperature independent Holtsmark theory is

approximately valid for strongly nonideal plasmas only, for which thermal effects

are negligible. In statistical equilibrium, a balance among (average) kinetic par-

ticle and collective microfield energies exists, which is independent of the thermo-

dynamic process of plasma formation.
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VII. FREE ENERGY OF NONIDEAL CLASSICAL AND DEGENERATE PLASMAS

By

H. E. Wilhelm and A. H. Khalfaoui

Abstract

A quantum statistical theory of the free energy of a nonideal electron-ion

plasma is developed for arbitrary interaction parameters 0 < y < yc

(y - Ze2n'/KT is the ratioof mean Coulomb interaction and thermal

energies), which takes into account the energy eigenvalues of (i)

the thermal translational particle motions, (ii) the random collective

electron and ion motions, and (iii) the static Coulomb interaction energy

of the electrons and ions in their oscillatory equilibrium positions.

From this physical model, the interaction part of the free energy is

derived, which consists of a quasi-lattice energy depending on the

interaction parameter y, and the free energies of the quanitized electron

and ion oscillations (long range interactions). Depending on the degree

of ordering, the Madelung "constant" of the plasma is a(y) = - for y >> 1,

a(y) 6 a for y > 1, and a(y) my1/ for y << 1, where a - 1 is a constant.

The free energy of the high-frequency plasmons (electron oscillations) is

shown to be very small for y > 1, whereas the free energy of the low-

frequency plasmons (ion oscillations) is shown to be significant for

y > 1, i.e. for proper nonideal conditions. For weakly nonideal plasmas,

<< I, both the electron and ion oscillations contribute to the free energy.

Thus, novel results are obtained not only for proper nonideal (y > 1)

but also for weakly nonideal (y << 1) plasmas. From the general formula

for the free interaction energy AF of the plasma for 0 < y < yc , simple

analytical expressions are derived for AF in the limiting cases, y > > 1,

y z 1, and y << 1. Applications to astrophysical problems are discussed.
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INTRODUCTION

In the classical work of Debye and Hueckel on electrolytes, the total

Coulomb interaction energy is calculated from the continuum theoretical

picture of every ion interacting with its surrounding space charge cloud.

Using more sophisticated methods, similar results were obtained for

weakly nonideal plasmas (y<<l) by Mayer (cluster expansion), Ichikawa'

(collective variable approach 3), Vedenov and Larkin4 (graphical density

expansion), and Jackson 5 (hydrodynamic continuum interaction model).

Based on different methods and approximations, investigations of moderately

(y i) and strongly (y>>l) nonideal plasmas were given by Berlin

67 8and Montroll, Theimer and Gentry , Ecker and Kroell , Ebeling, Hoffman

and Kelbg , and Varobev, Norman and Vilinov 0, respectively.

In spite of differences in the theoretical approaches, the leading

terms of the analytical results for proper nonideal plasmas (y>l)

give essentially the same formula for the free plasma energy, AF/NKT = -ay +

blny + c, due to Coulomb interaction, where y = Ze2n1 /3/KT is the

ratio of electron - ion interaction energy and thermal energy and

a, b, c are constants depending on the respective approximations

and assumptions. The thermodynamic functions of strongly nonideal

plasmas (y>>l)were also determined with the help of Monte Carlo and

11 12 13computer methods by Brush, Sahlin, and Teller , Hansen , Vorobev et al

14and Theimer , respectively. Although computer methods provide limited

physical insight, they are useful for checking the quantitative validity

of analytical theories.

At sufficiently high electron densities, for which Y ? 1, classical

statistical theories fail due to thermodynamic instability 1
, which is
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inhibited by quantum mechanics. The classical plasma pressure would collapse for

y > I due to the negative electron-ion interaction energy, whereas in reality

the pressure remains positive in a plasma due to the Fermi pressure (exclusion

principle) of the electrons. For these reasons, we present herein a quantum-

statistical theory for nonideal plasmas based on concepts similar to those

16)
used by Debye for solids1 . The application of this model to proper

nonideal plasmas (y > 1) is justified since a plasma exhibits a quasi-

crystalline structure for y > 0 before it undergoes a diffuse transition

into a solid, metallic state at a critical value yc. The roll of the

longitudinal phononsof the Debye theory is assumed by the quanta of the

plasma oscillations (plasmons) in the case of the quasi-crystalline plasma.

The theory is also applicable to weakly nonideal conditions, since the quasi-

lattice energy reduces for weak ordering, y << 1, to the free interaction

energy of weakly nonideal plasmas.

The theory to be presented takes into consideration (i) the energy

eigenvalues of the random, collective electron and ion oscillations and

(ii) the static Coulomb interaction energy (quasi-lattice energy) of the

elecLrons and ions in their oscillatory equilibrium positions. Thus,

all significant long and short range Coulomb interactions are considered.

The results are applicable to arbitrary nonideal plasmas, 0 < y < yc V where yc

is the critical ordering parameter at which a phase transition into a

solid metallic state occurs.
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PHYSICAL FOUNDATIONS

Subject of the theoretical considerations are quasi-homogeneous high-

pressure plasmas consisting of electrons of charge -e and density n - N/V and

ions of charge +Ze and density n/Z = N/ZV, with typical densities in the range

20 -3 24 -3 3 4o
10 cm <3 n < 10 cm and temperatures of the order-of-magnitude T-0-lO 10 K.

For these conditions, the Debye radius D = (47ne2 (1+Z)/KT]-  is D - 6.901 x

[T/n(l+Z)2 - 10 cm,i..e., o is smaller than the atomic dimension and the number

of particles in the Debye sphere would be ND 47inD 3/3 1 for D<108 cm and

24 -3
n<10 cm . It is seen that the concept of Debye shielding completely breaks

down, and statistical theories containing the Debye length as a characteristic

parameter would be physically meaningless for high density plasmas.

The nonideal behavior of plasmas is determined by the interaction parameter

y, which is the ratio of the Coulomb interaction energy -Ze2nI / 3 and thermal

energy -KT,

y = Ze2 n /3KT= 1.671 x 10-3 Zn /3/T. (1)
20 ..-3024 -3 4

It follows that 0.5Z ! y < 15Z for 1020 cm-3 n < 10 cm and T - 104 oK. For

y i, the nature of the plasma changes from a "thermally expanding" (y<l) to

an "electrostatically contracting" (y>l) plasma. For y>l, the collapse of the

plasma due to Coulomb attraction between electrons and ions is inhibited by the

Fermi pressure of the electrons, i.e. by the quantum mechanical exclusion prin-

ciple. Thus, in the region 0 < y < I the plasma undergoes a diffuse transi-
c

tion from a nonideal classical plasma (y < 1) to a quasi-crystalline plasma

(1 y < y ), with an incomplete ordering comparable to that of a liquid.
c

An understanding of strongly nonideal plasmas has been attempted via the

(6-14)model of discrete interacting particles in a dense gas -. For the above

reasons, however, it appears to be more adequate to calculate
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the thermodynamic functions of propernonideal plasmas from the picture of

collective electron and ion oscillations. In this approach, the free inter-

action energy is due to the static Coulomb Interaction of the electrons and

ions in their "ejuilibrium positions" (:adelung energy) and their oscillation

energies about the equilibrium positions (plasmon energies).

Since the plasma volume V contains N electrons and N/Z ions, there exist

3N (high-frequency branch) and 3N/Z (low frequency branch) characteristic fre-

quencies w. of longitudinal oscillations. Each plasma oscillator of frequency1

Wi can only have the energy (ni + )1iini=O,l,2,..., so that the energy E{i}

of a plasma state with in. plasmons of frequency w. is1 1

E{il = Xnhw. (2)
{i}i 1

where {il designates the entire set of given eigenfrequencies w. Ac-1.

cordingly, the partition function Q of the longitudinal plasma oscillations is

e-E(i}/KT =11 I / ( l - e - iw /KT (3)
i{).

From Q, the thermodynamic functions such as the pressure, internal energy,

entropy, etc., are derived in the usual way, e.g., the free energy of the

plasmons is

F = -KT In Q = KT I ln(l-e-wi/KT). (4)
{i}

In the limit V-o' , the discrete eigenfrequencies w. are replaced by con-1

tinuous ones, w=w(k), in accordance with the dispersion law for space charge

waves of wave length A = 2w/k, 0 < k < k.

1. Electron Oscillations. The high-frequency branch of the space charge

waves is due to longitudinal electron oscillations. Their frequency w is for

classical (n < n) and completely degenerate (n >> n) electrons given b-7)

W = W2 [I +(c /4)ZY- 1 (kr ) 2  n (
p e e

119



p 201T n e

where

= 2(2nmKT/h2) 3/2 (7)

= (4nne2 /m) 12 (8)p
-

- '/3r e n 
- I 3

(9)

e

are the critical electron density, the plasma frequency, and

the mean electron distance (K ' Cp /c of the electrons, and m is

their mass). Since k - 2Tr/r (oscillations with A < r are
max e e

physically inconceivable), the electron oscillations propagate,

= w(k) > w , in nonideal plasmas.
p

2. Ion Oscillations. The low-frequency branch of the space

charge waves is essentially due to ion sound waves. Since the ions

are presumed to be nondegenerate, the frequency of the ion oscillations

is given by 
)

= 6k) (KiKT/M) 1/2k (10)

where

6(k) + Z(Ka/Ki) 1 /2 <

1 + (K ei/4 )Zy
- 1 (kr )2 n n

e e)2

6(k) 1 , n >> n , (12)

is a correction factor of magnitude-of-order 1, which shows the

influence of the electrons on the ion oscillations (M = mass, Ki

c /c of the ions).
p v

In weakly nonideal plasmas, y << 1, the electron sound waves are

strongly damped for wave lengths A < D, due to trapping of the resonance
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electrons with thermal speeds comparable to the wave speed. For proper

nonideal plasmas, y - 1, the number of particles in the Debye sphere

47D 3/3 is no longer large compared with one and D < 10- 8 cm is smaller

than atomic size, so that thermal Landau damping is no longer feasable.

For this reason, electron oscillations should exist for wave length

X> r if r > D.e e

The ions are nondegenerate since n. < g(2WMKT/h2)3/2 for the n -T

region under consideration. The electrons are considerable degenerate

for n > n by Eq. (7), i.e. their kinetic energy is essentially given by

the Fermi energy EF = 12(3[2n)2/3/2m for n > a. For this reason, the non-

ideality of the electrons increases with increasing n as long as n < 1,

but then decreases with increasing n as soon as n fi. From the condi-

tion Ze2n I/3 = EF follows that the electrons form again an ideal gas for

n >> 1023 Z3 . This anomalous behavior is expalined by the stronger in-

crease of EF cn2/3 with n compared with the Coulomb energy E ( n1/3
ccc

It is recognized that the effects of degeneracy and nonideality

on the dispersion of the ion sound waves, Eq. (10), are negligible.

Similarly, the effect of nonideality on the dispersion of the sound waves

of the degenerate electrons, Eq. (6), is negligible, but in the disper-

sion equation of the classical electrons, Eq. (5), K has to be inter-z" e

preted as a polytropic coefficient, where K e(y) - cp/c v as to order-of-

magnitude.
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STATISTICAL THERMODYNAMICS

In the plasma under consideration, the electrons and ions interact

through their longitudinal Coulomb fields (transverse electromagnetic

interactions are negligible for KT<mc 2). The electrons (s - e) and

ions (s = i) have thermal velocities c and random collective mean

mass velocities v due to their oscillatory wave motions about the

equilibrium positions, so that fheir local velocity is vs = s+ ca, with

) and < ' where <1s> = If3ils fs d3 ; is the average of u with

respect to the normalized velocity distribution fs of the species s. The

resulting Hamilton function with Coulomb interaction leads to a free energy

of the plasma of the form:

F= Fs(0) + EM + F s (13)
s=e,i s=e,i

F(o) is the ideal free energy of the noninteracting plasma components
s

s. EM is the Coulomb interaction energy of the electrons and ions in their

equilibrium positions. F is the free energy of the electron and ion

oscillations, i.e. of the high and low frequency plasmons, Eq. (4).

It should be noted that Eq. (9) takes into consideration all

significant short-range and long-range Coulomb interactions by means of

the Madelung energy EM and the plasmon energies F s. As is evident from

the derivation 17) of Eqs. (5Y-(6) and (10), in which terms of order m/M are

neglected compared to 1, Eq. (9) contains the e-e, e-i, and i-i Coulomb

-1/3
interactions at distances A > n

(o)1. Free Energy Fs . In high pressure plasmas, the electrons are

-15 3/2 -3
partially degenerate for densities n >n where n = 4.828 x 10 T [cm-3,

whereas the ions behave in general classically. Fermi statistics gives

18)
for the free energy of the ideal electron gas
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F - NKT U (pIKT)/Ujj(ONT) (14)

wherc

U (p /KT) 1 f x P dx ,1/2 3/2 (15)p P(p+l) f eX-WKT + i

0 
+

and

2 3/2n = 2(2TrmKT/h ) U1 /2 (Ii/KT) (16)

defines the Sommerfeld integrals 19), and determines the chemical

potential ji =p(n, T) of the electrons, respectively. The free

energy of the translational degrees of freedom of the classical,

ideal ion gas is 18)

(o)- (N/Z) KT ln[(2nMKT/h2 ) 3/2Z). (17)

2. Quasi-Lattice Energy EM. The equilibrium positions of the

electrons and ions, about which the electrostatic oscillations

occur, form an electron "lattice" and an ion "lattice", with

an incomplete ordering. In the Wigner-Seitz approximation,

the Coulomb interaction energy of the electron-ion lattices is,

independent of the lattice type,

- 9 1/3
EM =-ayNKT , 1 cz=- (47/3Z) , y > 1. (18)

As the ordering of the plasma increases with y, a(y) is a weak

function of y such that asymptotically a = i for y - 1. Eq.(18)

t-EM/N - Ze2/is of the order of the average

e-i interaction energy. For weak ordering, y << 1, it will be shown

that e yl/.
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3. High-Frequency Contribution Fe. Since the number of longitudinal

modes with wave numbers between k and k + dk in volume V is V~wk 2 dk/(2r) 3 ,

Eq. (4) gives for the free energy F eof the high-frequency electron

oscillations of energy 1tw(k)

Fe /K(/2,2) = Z n{l-exp[-1f(k)/KT'} k2dk (9

0

whi-.re

w(k) = w (l+a2k2)/2 ,(20)

a2=C/2= (K /47T) (Z/y)r 2 
, n n ,(1

m p e re n<1(1

a2  (3/ V v2 1 2  9 (_!!)/ 3 (_I)/ 3  (Z /Yy 2 ~ ,(2

a (/5)FWp 20ir 6 ii eP >n(2

by Eqs. (5)-(6). The speed of sound c m and the Fermi speed v F

of the electrons are

cm = (K eKT/m)/2 V F =1i(37r2n) 1/3 fin. (23)

The number of modes in (0, k e) and V equals the number 3N of

degrees of freedom of the electron gas, i.e.,

k
(27r)- 3V e 47rk 2 dk = 3N, k e= (18ir 2n1/3 (24)

A 0

Integration of Eq. (19) by parts yields, under consideration of

03 KTV/6r 2 -3NKT, for the free energy of the high-frequency plasmons:e

F 3NKT(- - exp[ - -- 2 Cl+a2 k2 2] - F (---, (25)e ~ (Il.KT e KT e

where
-hW -3A e 41X21 /2 d

F(- P ak e = .(ak e) f x-~) d (26)
KT e KT e1 ~ (W/KT)(,%2)/2_ 1

and

1Wp/KT =(4n)2(X /r- (y/z)'2 e~ 1(mKT) 12 ,(27)
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ak = K e/2(91v/2/4)'/3(z/y)Y/2 ,n << n (28)

ake = 2 .e29
e eake =f 2 4'/6 9/ /2V)(nl )'/3(zly)/2 ,n >n. (29)

By means of the successive substitutions, (i) x=sinh , dx cosh E d

and (ii) e = (M /KT) coshC, de = (-w /KT) sinh F dE,the integral (26)
p p

is transformed to

Repake  -- (ake -3 (p2_2 /2 (ec-l) dc (30)

where
a=k) /KT, e C e + (ak e )21(31)

Since the leading expression in Eq. (25) is the logarithmic term, it

is sufficient to give for F(c , ak e) the series approximation (Appendix),

3/
F( p, ak e )/2 2(ak 3 -/2

p e n p n

emcp [ (3)(3/ ) -  -  + n y( + n, (C -C )m), c < 3c , (32)

m=l n=O p e p

where 5 - 3
- +n e p 3+n

y + n, (-c lm) ffi m 2 f u2  e-mudu (33)
2 e p

0
ithinopeegma20)>

is the incomplete gamma function--- . Since in general y/Z 1 for

£ < ;e < 3 , the expansion (32) is useful where simple approximatep e p

relations do not exist.
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4. Low Frequency Contribution Fi. With the number of modes in the

interval dk at k and volume V given by V4rk2 dk/(2 )
3 , Eq. (4) yields for the free

energy F of the low-frequency ion oscillatianr. of energy tw(k)

i

F./KT(V/2w 2 ) = tn{l-exp[- w(k)/KT]) k2dk (34)

0

where

w(k) = 6 (k)cMk, (35)

cM = (Ki KT/M) /2 (36)

by Eqs. (10) and (12). The number of modes in (0, ki) and V equals

the number IN/Z of degrees of freedom of the ion gas, i.e.,

ii

(27)- 3V 47k 2dk = 3N/Z, k1 
f (18w2n/Z)/3 (37)

0

Partial integration of Eq. (34) gives, under consideration of

k3 KTV/672 = 3(N/Z)KT, for the free energy of the low-frequency plasmons:

F. = 3(N/Z)KT n{l-exp[- -- k. }- (38)

KT

where ^ c k

G(ki) = _ .- [6(k)416'(k)]k 3dk (39)
KT~ ~ ie(N KT)6 (k)k .

0

Since the dispersion factor 6(k) is a bounded function varying very

little with k such that 1<6(k) '- (1+Z) I2 for ks(0, ki), 6(k) can

be approximated by an average value 6,

6(k)= 1 l, n < fi  (40)

Since in addition the logarithmic expression is the dominant term in Eq. (38.),

the integral (39) is approximated by

G(i 31- c3(e-i) - d, (41)
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where

E licMkKT, e1i =lKcHzk l/KT. (42)

G( as he emi-onvrget sriesexpnsins,20)

has~~ the seijnegn seis<xasin,
G(C ) = i'-Ii~~2+ 1, «1 (43)

1 3 8 1 20 i ci

14 -3 -E ], >(c _ +'~ (44)1cr=-c 15e ij 1  1

This completes the formal mathematical aspects of the theory,

the physical implications of which require further elaboration.
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APPLICATIONS

For applications of the theory to strongly, intermediate, and weakly

nonideal plasmas, it should be noted that the dimensionless parameters

y/Z, thp /KT, ake , and n/n occuring in Eq. (25) for the free energy Fp ee

of the high-frequency plasmons can not be varied independently. Since

both y/Z and Xe /re increase with increasing n and decteasing T,

Viw /KT - (Xe/r e)(y/Z) /2varies over a large n-T region similar to (y/Z)I,pee

Eq. (7). Numerically,

n/Z = 1.670x 1 T, hAp /KT 
4 .328K10 7n /T, n/ = 2.071x106 nT

-3

ak = 1.586 Ke (Y/Z) 2  n <<
e ,

ak = 3.308(n/n) 16 y/Z)6, n>> f. (45)e

E. g., for T=10 4K, y/Z > 1 if nZ1021 cm- 3 andlT /KT > 1 ifp
n < 5x . For T=10oK, y/Z > 1 if n > i0 1 8 cm 3 , etc. Thus,

for typical conditions of nonideal plasmas y/Z and 1w p/KT are of the

same order of magnitude. It is also recognized that in general

n/n >> 1 if y/Z >> 1, and n/n<< 1 if Y/Z<< 1.

In Eq. (38) for the free energy Fi of the low frequency plasmons,

only one characteristic parameter Ci occurs since 6(k)- -1. By Eq.

(42), this parameter is

(7 = cM.ki= (1872)1/1/ 2.158xlO 5 Z 1/3( /2 43 (46)KT r i <1(6

where

XA =-I/(MKT) 1/2 r (n/Z)"V " (47)

Accordingly, for typical nonideal plasma conditions, it is << 1

since Ai/ri << 1 (classical ions) although in general X e/re > 1 (degenerate

electrons) for y/Z>1 oriwp /KT>l.
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The deviation AF of the free energy of a nonideal plasma from

ideality is by Eq. (13) due to the quasi-lattice energy EM and the plasmon

energies F 1 )

A +  F.. (48)
s=e,i

17)
Since the theory of electron oscillations-- has not yet been

developed for arbitrary degrees of degeneracy (n'> n), the contributions

of the electron oscillations to AF in the cases n n and n~ n have to

be estimated from the dispersion equations for n<< n [Eq. (5)] and

n > n (Eq. (6)], respectively. Fortunately, it turns out that

IF e<<IAFI for y/Z> 1, so that quantitatively relyable approximations

for .F can be derived.

1. Strongly Nonideal Plasmas. By Eq. (6) the spectrum w(k) of

electron oscillations extends over a band A- w above the plasmaP

frequency for y/Z >> 1 since k e ke r i and (n/n) Z/3Z- - 1. Application

of the mean value theorem for integrals to Eq. (25) shows that the free

energy F of the high-frequency plasmons vanishes exponentially for
e

c i.e. Y/Z -:

p

e/3NKT = (n{l - exp[-c p(l+a2ke2) 1}

-3 ak
C (ak) e 4 (+0ex [p(4 2 ]_ e 4(l+x2) -  

Ox , E

exp[c p(l-1i 2  ]. x-

0

< x ak e  (49)

Accordingly, I>Fe /3NKT<< 1 for c 1, i.e., y/Z >>1. On the other

hand, the free energy of the low frequency plasmons is by Eq. (38) for

nondegenerate ions
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F 3(N/Z)KT[ne -(1/3)] =

3(N/Z)KT{bIy + tn[(18n21Z4)/3 (K4KTIM)I - (1/3)), Ci < 1. (50)e2 /'I

It is noted that y/Z >> I is compatible with tci = icMl i6/KT<< 1 as

explained above.

Equations (49) and (50) demonstrate that the contribution of the.

electron oscillations to the free energy is negligible in strongly

nonideal plasmas, y/Z >> 1. In this limit, the nonideal part of the

free energy is due to the quasi-lattice energy EM and the ion

oscillations,

AF/NKT = - ay + (3/Z)fny + (3 /Z)tn(OcM/vB) - (i/Z), y/Z >> 1, (51)

where

vB = e/f, 8 = (18r 2 Z-4) I/3  (52)

Note that tny depends on both n and T whereas en cM/VB depends only

on T, where the Bohr speed is vB = 2.118 x 10 8cm/sec >> cM = (KiKT/M) .
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It is remarkable that the electron oscillations contribute little

to the free energy compared to the ion oscillations for y/Z >> 1. This

result holds even for moderately nonideal conditions, y/Z > i. Thus,

we disagree with the formula "F = n0 + 3NKT1Qiw 0 /KT)" stated withouto 0

21
derivation for nonideal plasmas by Norman and Starostin-, according

to whom "all the vibrations have exactly the same frequency wo

near the plasma frequency w ". The derivation of this formula requiresp

-Kw(k)/KT - 1 for the electron oscillations, which implies y/Z << 1,

but the latter inequality contradicts their assumption w(k) ; = p

since the frequency spectrum extends over a large Land Aw > w abovep

w for y/Z << 1. For these reasons, the free energy proposed by themP

is not applicable to proper nonideal plasmas, y/Z > 1, nor is it correct

for less nonideal conditions, y/Z < 1.

2. Intermediate Nonideal Plasmas. For intermediate nonideal

conditions, 1 y/Z < 10, the spectrum w(k) of electron oscillations
2/ -1

extends over a region Aw < O(p I above wp by Eq. (6) since (n/n) -Zy <1 and

kr e ke r 1. Also in this case, a relatively simple formula can bee ee

devised for the free energy. The logarithmic term in Fe, Eq. (25)

is negligible compared to that in Fi, Eq. (38), for y/z> 1 since

Ep >> icM6ki/KT for y/Z > I by Ec's. (45) and (46), respectively.

Accordingly, the nonideal part (48) of the free energy is for inter-

mediate nonideal plasmas:

AF/NKT = -y + (3/Z)tny + (3 /Z)fln(ScM/VB) - (3/Z)G(i )

- 3F(c ,ake), Y/Z 1. (53)
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For y/Z> 1, the ions can be assumed to be non-degenerate , =i lcM~ki/KT << 1

by Eq. (46), so that the ion integral (41) reduces to

G(Ei) : 1/3, i < 1. (54)

Since > p > 1 and ake Ep  I [Eq. (45)] for y/Z > 1, the electron

integral (30) is significantly smaller than G( i) = 1/3,

0 < F(rpak) < (C2-2) 3/2 (ak c ) -3 n(le-e/l-e6P) << 1, y/z 1. (55)
P e e p ep

The iower and upper bounds of F(E ,ak e) have been obtained by means of

the mean value theorem for the integral (30),

F(EP ake ) = (ak ep ) (E -E ) f (e-l)dE, Ep < E s C' (56)

C

p

While for strongly nonideal conditions, the contribution of the

electron oscillations to the free energy is completely negligible,

this contribution is still insignificant for intermediate nonideal

conditions, y/Z > 1, by Eq. (55). For more exact evaluations, the

small term F(e pak e) in Eq. (53) can be computed from Eq. (30) or (32).

3. Weakly Nonideal Plasmas. Although the theory of weakly

nonideal systems is well understood, -5)it is interesting to investigate

whether the present model for proper nonideal plasmas gives reasonable

results in the limit y/Z << 1. For y/Z << 1 it is ak >> 1 by Eq. (45),e

and the spectrum w(k) of electron oscillations extends over a large

region Aw >> wp above wp by Eq. (5). The electron integral becomes for

ak >> , ak
e a

F(E ,ak e ) = C p(ak e)-3 fe(epxl)-lx3dx, y/Z << 1, (57)

0
i.e.,

F(c ak )( 1 - 1 2 e ak << 1. (58)
p e) l -  ke ) + pe pake) p e
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Although e ak is independent of y/Z by Eqs. (27) and (28), the expansionp e

(58) is valid since the electrons are certainly nondegenerate, Xe/r << 1

for y/Z 1 1, and

E ak = (41K e)1/2 (91/21/3 Xe/r e << i Xe /e i . (59)

For nondegenerate ions, the integral (41) is G(ei) = 1/3 by Eq. (43)

since E. << 1. Thus, one obtains from Eqs. (18), (25) and (38) for1

the interaction part of the free energy of weakly nonideal plasmas:

AF/NKT = -a(y)y + (3/Z)by+ (3/Z)&n( cM/vB)

+ 3n(cpake ) - (1+z ), y/Z< -i, (60)

where the logarithmic term in Eq. (25) has been expanded for

£ ak K< 1.p e

In Eq. (60), a(y) is the Madelung constant of the weakly nonideal

plasma with weak electron and ion ordering, a(y) -0 for y-0. Comparison

of the term -a(y)y(NKT) in Eq. (60) with AF =

-(NKT)(2/3)Trl2(I+Z)2e3n 2(KT) - 3/2 of the Debye-Hueckel theor23)

(weakly nonideal plasmas) yields the result

a(y) = (2/31 TI/2 (l+Z_) 1 /2 y12 y/Z<< 1. (61)

The previous theories of weakly nonideal plasmas do not lead to the

logarithmic terms in Eq. (60) since they do not take into account the

effects of electron and ion oscillations.

4. Numerical Illustrations. Fig. 1 shows the (negative) free energy F
0

of an ideal Z = I plasma versus n and T based on Eqs. (14) - (17). F Serves
0

as a reference quantity, relative to which the quantitative significance of the

nonideal contributions are measured. IF 0'increases with increasing n and T.
1
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FIG.l: Free energy F 0< 0 of ideal plasma versus n[cm-

with T[ K] as parameter (Z=1).
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Fig. 2 shows the deviation AF<O of the free energy of a Z - 1

plasma from its ideal value Fo<O versus n and T based on Eqs.

(48), (25) and (38). In the n-T region under consideration, [AFI is

of the same magnitude-of-order as IFoI, i.e. is considerably larger than

the thermal energy -NKT. AF/Fo exhibits only at large densities

n >1019 cm- 3 a significant T - dependence.

Fig. 3 shows the free energies Fe and Fi of the high (e) and low (i)

frequency plasmons of a Z = 1 plasma based on Eqs. (25) and (38). IF I isi

considerable larger than IFel, in particular at higher densities. The

T-dependence of Fe i/ F increases with increasing density n. Comparison

of Figs. 2 and 3 indicates that AF F + Fi. i.e. the quasi-lattice energy

EM [Eqs. (18) and (61)] is not the dominant nonideal effect.

The Figs. 2 and 3 demonstrate the quantitative importance of the nonideal

effects AF = EM + Fe + i, in particular of the low (i) and high (e) frequency

plasmon contributions Fi and Fe (F i > Fe), for the evaluation of the free

energy F = F0 + AF of high density plasmas.

For quantitative calculations, it is noted that the free energy AF is

hardly affected by inaccuracies in the large maximum wave numbers k and kie

which have been determined in accordance with the Debye theory which implies

strong coupling (y 1 1). For weakly nonideal plasmas, y << 1, it appears

to be more meaningful to determine k = 21r/X from the minimum wave lengths s

s 2r where r = (4rn s/3)-1/3 is the mean particle radius, s = e, i.5 S S

Both models give, however, essentially the same result since k (3/)

(r/2) I / 3  1.
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FIG.2: Deviation AF < 0 of free energy from F < 0 versus nI~cm-

with T[ 0K1 as parameter (Z-1).
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FIG.3: Free energies F < 0 of high (e) and low (i) frequency plasmons
ei

versus n[cn -3 with T[ OKI as parameter (Z-1).
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APPENDIX: Expansion of F(E ,ak e)

The integral (23) is conveniently rewritten in the form

F(E pak e (akecp) 3 I(Cp, ) (Al)

where

31I(E C) (c2E2-) ec-) dc, O< c C.(2

Cp

Since c > 0, i.e. e- < 1, there exists the series expansion,

(eC-l)-  = e - , C > 0. (A3)
m~l

The substitution, u =c - E . du = de, and Eq. (A3) transform Eq. (A2) to

p C-e p 3 u 3/2 (u+-mu2p 
(

2

I(C ,C) =Iu e-m2p e-du. (A4)m=1

U=O

For u<2e p, i.e., c < R , the binomial expansion,3/2 u<,) u~. )n < Jp

(u+2e p) 32 = (2c)/2 ) u/2p < 1, (A5)
n0

is used, which reduces Eq. (A4) to the double series:

=C e-me (2 ) = (2E T/2y+ ) c

m=l n=0

c < 3cp, (A6)

where 5 -C 3
+n p u eUdu

+n, (e-c )m) - m n u (A7)

0

is the incomplete gamma function, which is tabulated. 20 )  In an

amologous way, the integral (A2) can be solved for u > 2cp, i.e.,

3e < < .
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VIII. FREE ENERGY OF RANDOM SOUND OSCILLATIONS

By

A. H. Khalfaoui and H. E. Wilhelm

ABSTRACT

Thermal equilibrium properties of a monatomic gas are

investigated by taking into account the energies of the random

sound wave oscillations. The free energy is derived by a quan-

tum statistical mechanics due to Bose. The system is considered

as a macroscopic continuum in which random acoustic oscillations

are thermally excited. It is shown that the contribution AF to

the free energy due to the sound wives is significant for high

density gases, in particular at moderately high temperatures.
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INTRODUCTION

In solids and liquids, the effect of sound waves on the therodynIAuL

quantities was studied by Landau and others (1). In ionized gases, the

electrical oscillations (plasma oscillations) affect the thermal equilibrium

of the system (2-3) . Similarly, we are considering the contribution of the

sound wave oscillations to the free energy of noncondensed gases. In

thermal equilibrium of gases, the acoustic oscillations share the partition

of energy andthus, change the thermodynamic functions of the system. The

distribution of the sound wave quanta is determined by Bose statistics,

which is used herein.

The problem under consideration is concerned with gases as a macroscopic

continuum, which exhibits a set of separate elementary exitations, the sound

wave oscillations. These exitations behave like 'quasi-particles" moving

in the volume occupied by the gas, and have definite energies. The free

energy of the gas evaluated by the theory to be presented will take into

consideration, in addition to the random thermal energies of the gas

particles, the energy of the random sound wave oscillations. It will be shown,

that the effect of the sound waves is important only at high temperatures

and high gas densities. Tho results of this theory amp applicable at

temperatures and densities for which the gas is not in a condensed state

(liquid or solid).

Although nonideal effects due to finite particle size are not taken into

account explicitly, it should be noted that the gas under consideration is not

an ideal one. The existence of sound waves in the gas implies that there

are particle interactions, since a gas can not perform the ordered, collective

mean mass motions of random sound waves without such interactions.
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THEORY

Consider a gas as a continuum of volume V containing N atoms. Because

the velocity of the gas in a sound wave is in the direction of propagation.

the sound waves are longitudinal. Each oscillator of frequency w. of the

longitudinal sound waves can only have the energies (f - h/2r -

reduced Planck constant)

En w (n +-), n 0, 1,2 .... ()

The frequency of the suund waves with wave number ka is (M - mass of atoms)

w = ka Cs, Cs = (yKT/M) (2)

where y m C p/Cv is the polytropic coefficient. Accordingly, the partition

function of the gas oscillations is:

-iC sk a/2
Z ~ ~ e- so -06Z=1 = 0e-8Csko(na+ i) -" -tH (3)

n 0 l-e s a
a

where =il/KT (K = Boltzmann constant, T - Temperature of the system). From

the partition function Z, the thermodynamic quantitites, such as pressure,

internal energy etc., are derived in the usual way. The free energy of the

random sound oscillations is given by:

AF --KT en Z (4)

In the limit V -* -,the discrete eigenfrequencies wa are replaced by a continuous

spectrum, w - w(k), in accordance with the dispersion law for sound waves, of

wave length X Wk,

-kC , O<k<k . (5)

The theory to be presented is sensitive towards the cut-off wave number

k, which is large in all cases of interest. Since acoustic waves with wave-

lengths X<max(r,L) and mean free paths L<r-n are not possible in gases,
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k 2 /A is determined by the mean free path L,

k = , L = L(n,T), (6)

where n = N/V is the density of the atoms. The number of (longitudinal) wave

2 3
modes with wave numbers between k and k + dk in volume V is g(k)dk - V 4n k dk/(2w)

Accordingly, Eqs. (3) and (4) give

^k 2 /-f~ 'k/2

AF =- KTV k k 2 en - k- /2\dk. (7)

27r2 J 1-e- MCskdk

The integral in Eq. (7) is decomposed into the contributions i) from the ground

state (n. = 0) and ii) higher states (n > 0). By Eqs. (3) and (7)

AF = F I + F2  
(8)

where

v5c k 2
F- =  s k 3 dk =V (9)
1 4T2 ) k(13

0

and

F k )k
F2 = V2 en(l- e s^)- 2 Mk (10),

6Bir 67r fJeCs -
0

by partial integration. The integral in Eq. (10) can be solved for "high" and

"low" temperatures by series expansion4 which gv 45

F = k3  Bx 12 v( 1

an 2 en2 (I1( - e x) - + 2+2j 41 V x < 2w n (11)

F = en (1 l ) -[ 4 - e 2-
2 6 2 - 3 6

where

x = iC k 
(3
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and B2v are the Bernoulli numbers, and C(4) = iT4/90 is the Riemann C-function.

For comparison purposes, AF and the classical free energy F of the ideal0

monatonic gas (M = atomic mass) are stated:

=NKT ) n - (14)

and 2v

k2F = C ) + K Ijen(l - e ix) - + 3)v2v! x<2iT. (15)
s\41T/4 6a132w V=l(2 + 3)- v

AF = MC + -22 In(l - ex) - [6C(4 x e

s1S 6B 2 x3nl

nx6 2 x > 1 , (16)

for "high" and "low" temperatures, respectively.

It is interesting to compare the specific heat of the ideal gas (C ) and

the sound oscillations (AC) in the high temperature limit, x = OiC k < 1.
s

By Eqs. (14) and (15),

C =-T2 F /aT = 3NK/2 (17)
0 0

2 2 2T 3 - -1/3= -T3 AF/PT - (V/L )K << C for r n << L (18)

In the derivation of Eq. (18), it should be noted that AF=(Vk 3/68r 2)Zn x

for x << 1 where x T/ 2 . It is seen that AC < C at high temperatures since

r < L.

This completes the mathematical aspects of the problem, the physical

implications of which will be discussed next.

144



DISCUSSION

In a hypothetical ideal equilibrium gas without particle interactions,
the average particle velocity is <C= cf(c) d C= , i.e. the particles have

pure thermal velocities c with a Maxwell distribution fG). No random mean mass

motions or collective particle motions, such as sound oscillations, exist due

to the absence of particle interactions. The free energy of the ideal or

non-interacting monatomic gas is, therefore, F , Eq. (14). In any real gas
0

with particle interactions, stochastic mean mass motions <v(r,t)>

= f(,,r,t)d v j 6 exist due to the presence of thermally excited sound waves

jf(vr,t) is the local distribution of actual particle velocities v = <v> + c.

Since the total energy of the gas is distributed both over the thermal particle

motion c and the stochastic, acoustic mean mass motions <v(r,t)> , a free

energy contribution from the random sound waves exists. Thus, the free energy

SF of the random sund oscillations represents a nonideal effect which is

ultimately due to particle interactions, which make a hydrodynamic or continuum

description of a gas possible.

In the contribution AF of the sound waves to the free energy F of an

ideal gas as given by Eq.a5) or (16), we identify two parts. i)F1 which is

the contribution of the "zero oscillation" mode which corresponds to n a0 in0

Eq.(l), and ii) F2 the higher mode oscillation contributions n >1. The

explanation for the increase of the free energy of the sound quanta Tw with

temperature is given by statistics. In the high temperature limit, the number

N of sound quanta of frequency ,, is N W KT/Ifw, i.e. increases proportional with T.
L LA

In Fig. 1 we have drawn AF/F for monatomic helium gases over a range of
o

temperatures and densities to show the variation of AF. The overall contribution

of ',F is larger at higher densities but decreases rapidly for lower densities,

especially at high temperatures. Quantitatively, AF represents a noticeable

effect only at extremely high densities n of the gas [n>lO 21cm 3). For this

reason, the free energy AF of the sound oscillations has to be considered in'the

evaluation of the thermodynamic functions of high-temperature gases only at

hiiuh df-nv i i iq
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Cases with a considerable acoustic noise background are encountered

in various high temperature engineering systems, such as gas turbines,

jet engines, rocket exhausts, etc. The theory presented permits calcula-

tion of the free energy AF of the acoustic degrees of freedom in such

systems, provided that the acoustic noise is in thermal equilibrium.

Considerably larger free energy contributions are to be expected under

nonequilibrium conditions, particularly if the acoustic fluctuations

exhibit intensity levels corresponding to turbulence.
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